Feed aggregator



“Mooooo.”

This dairy barn is full of cows, as you might expect. Cows are being milked, cows are being fed, cows are being cleaned up after, and a few very happy cows are even getting vigorously scratched behind the ears. “I wonder where the farmer is,” remarks my guide, Jan Jacobs. Jacobs doesn’t seem especially worried, though—the several hundred cows in this barn are being well cared for by a small fleet of fully autonomous robots, and the farmer might not be back for hours. The robots will let him know if anything goes wrong.

At one of the milking robots, several cows are lined up, nose to tail, politely waiting their turn. The cows can get milked by robot whenever they like, which typically means more frequently than the twice a day at a traditional dairy farm. Not only is getting milked more often more comfortable for the cows, cows also produce about 10 percent more milk when the milking schedule is completely up to them.

“There’s a direct correlation between stress and milk production,” Jacobs says. “Which is nice, because robots make cows happier and therefore, they give more milk, which helps us sell more robots.”

Jan Jacobs is the human-robot interaction design lead for Lely, a maker of agricultural machinery. Founded in 1948 in Maassluis, Netherlands, Lely deployed its first Astronaut milking robot in the early 1990s. The company has since developed other robotic systems that assist with cleaning, feeding, and cow comfort, and the Astronaut milking robot is on its fifth generation. Lely is now focused entirely on robots for dairy farms, with around 135,000 of them deployed around the world.

Essential Jobs on Dairy Farms

The weather outside the barn is miserable. It’s late fall in the Netherlands, and a cold rain is gusting in from the sea, which is probably why the cows have quite sensibly decided to stay indoors and why the farmer is still nowhere to be found. Lely requires that dairy farmers who adopt its robots commit to letting their cows move freely between milking, feeding, and resting, as well as inside and outside the barn, at their own pace. “We believe that free cow traffic is a core part of the future of farming,” Jacobs says as we watch one cow stroll away from the milking robot while another takes its place. This is possible only when the farm operates on the cows’ schedule rather than a human’s.

A conventional dairy farm relies heavily on human labor. Lely estimates that repetitive daily tasks represent about a third of the average workday of a dairy farmer. In the morning, the cows are milked for the first time. Most dairy cows must be milked at least twice a day or they’ll become uncomfortable, and so the herd will line up on their own. Traditional milking parlors are designed to maximize human milking efficiency. A milking carousel, for instance, slowly rotates cows as they’re milked so that the dairy worker doesn’t have to move between stalls.

“We were spending 6 hours a day milking,” explains dairy farmer Josie Rozum, whose 120-cow herd at Takes Dairy Farm uses a pair of Astronaut A5 milking robots. “Now that the robots are handling all of that, we can focus more on animal care and comfort.”Lely

An experienced human using well-optimized equipment can attach a milking machine to a cow in just 20 to 30 seconds. The actual milking takes only a few minutes, but with the average small dairy farm in North America providing a home for several hundred cows, milking typically represents a time commitment of 4 to 6 hours per day.

There are other jobs that must be done every day at a dairy. Cows are happier with continuous access to food, which means feeding them several times a day. The feed is a mix of roughage (hay), silage (grass), and grain. The cows will eat all of this, but they prefer the grain, and so it’s common to see cows sorting their food by grabbing a mouthful and throwing it up into the air. The lighter roughage and silage flies farther than the grain does, leaving the cow with a pile of the tastier stuff as the rest gets tossed out of reach. This makes “feed pushing” necessary to shove the rest of the feed back within reach of the cow.

And of course there’s manure. A dairy cow produces an average of 68 kilograms of manure a day. All that manure has to be collected and the barn floors regularly cleaned.

Dairy Industry 4.0

The amount of labor needed to operate a dairy meant that until the early 1900s, most family farms could support only about eight cows. The introduction of the first milking machines, called bucket milkers, helped farmers milk 10 cows per hour instead of 4 by the mid-1920s. Rural electrification furthered dairy automation starting in the 1950s, and since then, both farm size and milk production have increased steadily. In the 1930s, a good dairy cow produced 3,600 kilograms of milk per year. Today, it’s almost 11,000 kilograms, and Lely believes that robots are what will enable small dairy farms to continue to scale sustainably.

Lely

But dairy robots are expensive. A milking robot can cost several hundred thousand dollars, plus an additional US $5,000 to $10,000 per year in operating costs. The Astronaut A5, Lely’s latest milking robot, uses a laser-guided robot arm to clean the cow’s udder before attaching teat cups one at a time. While the cow munches on treats, the Astronaut monitors her milk output, collecting data on 32 parameters, including indicators of the quality of the milk and the health of the cow. When milking is complete, the robot cleans the udder again, and the cow is free to leave as the robot steam cleans itself in preparation for the next cow.

Lely argues that although the initial cost is higher than that of a traditional milking parlor, the robots pay for themselves over time through higher milk production (due primarily to increased milking frequency) and lower labor costs. Lely’s other robots can also save on labor. The Vector mobile robot handles continuous feeding and feed pushing, and the Discovery Collector is a robotic manure vacuum that keeps the floors clean.

At Takes Dairy Farm, Rozum and her family used to spend several hours per day managing food for the cows. “The feeding robot is another amazing piece of the puzzle for our farm that allows us to focus on other things.”Takes Family Farm

For most dairy farmers, though, making more money is not the main reason to get a robot, explains Marcia Endres, a professor in the department of animal science at the University of Minnesota. Endres specializes in dairy-cattle management, behavior, and welfare, and studies dairy robot adoption. “When we first started doing research on this about 12 years ago, most of the farms that were installing robots were smaller farms that did not want to hire employees,” Endres says. “They wanted to do the work just with family labor, but they also wanted to have more flexibility with their time. They wanted a better lifestyle.”

Flexibility was key for the Takes family, who added Lely robots to their dairy farm in Ely, Iowa, four years ago. “When we had our old milking parlor, everything that we did as a family was always scheduled around milking,” says Josie Rozum, who manages the farm and a creamery along with her parents—Dan and Debbie Takes—and three brothers. “With the robots, we can prioritize our personal life a little bit more—we can spend time together on Christmas morning and know that the cows are still getting milked.”

Takes Family Dairy Farm’s 120-cow herd is milked by a pair of Astronaut A5 robots, with a Vector and three Discovery Collectors for feeding and cleaning. “They’ve become a crucial part of the team,” explains Rozum. “It would be challenging for us to find outside help, and the robots keep things running smoothly.” The robots also add sustainability to small dairy farms, and not just in the short term. “Growing up on the farm, we experienced the hard work, and we saw what that commitment did to our parents,” Rozum explains. “It’s a very tough lifestyle. Having the robots take over a little bit of that has made dairy farming more appealing to our generation.”

Takes Dairy Farm

Of the 25,000 dairy farms in the United States, Endres estimates about 10 percent have robots. This is about a third of the adoption rate in Europe, where farms tend to be smaller, so the cost of implementing the robots is lower. Endres says that over the last five years, she’s seen a shift toward robot adoption at larger farms with over 500 cows, due primarily to labor shortages. “These larger dairies are having difficulty finding employees who want to milk cows—it’s a very tedious job. And the robot is always consistent. The farmers tell me, ‘My robot never calls in sick, and never shows up drunk.’ ”

Endres is skeptical of Lely’s claim that its robots are responsible for increased milk production. “There is no research that proves that cows will be more productive just because of robots,” she says. It may be true that farms that add robots do see increased milk production, she adds, but it’s difficult to measure the direct effect that the robots have. “I have many dairies that I work with where they have both a robotic milking system and a conventional milking system, and if they are managing their cows well, there isn’t a lot of difference in milk production.”

The Lely Luna cow brush helps to keep cows’ skin healthy. It’s also relaxing and enjoyable, so cows will brush themselves several times a day.Lely

The robots do seem to improve the cows’ lives, however. “Welfare is not just productivity and health—it’s also the affective state, the ability to have a more natural life,” Endres says. “Again, it’s hard to measure, but I think that on most of these robot farms, their affective state is improved.” The cows’ relationship with humans changes too, comments Endres. When the cows no longer associate humans with being told where to go and what to do all the time, they’re much more relaxed and friendly toward people they meet. Rozum agrees. “We’ve noticed a tremendous change in our cows’ demeanor. They’re more calm and relaxed, just doing their thing in the barn. They’re much more comfortable when they can choose what to do.”

Cows Versus Robots

Cows are curious and clever animals, and have the same instinct that humans have when confronted with a new robot: They want to play with it. Because of this, Lely has had to cow-proof its robots, modifying their design and programming so that the machines can function autonomously around cows. Like many mobile robots, Lely’s dairy robots include contact-sensing bumpers that will pause the robot’s motion if it runs into something. On the Vector feeding robot, Lely product engineer René Beltman tells me, they had to add a software option to disable the bumper. “The cows learned that, ‘oh, if I just push the bumper, then the robot will stop and put down more feed in my area for me to eat.’ It was a free buffet. So you don’t want the cows to end up controlling the robot.” Emergency stop buttons had to be relocated so that they couldn’t be pressed by questing cow tongues.

There’s also a social component to cow-robot interaction. Within their herd, cows have a well-established hierarchy, and the robots need to work within this hierarchy to do their jobs. For example, a cow won’t move out of the way if it thinks that another cow is lower in the hierarchy than it is, and it will treat a robot the same way. The engineers had to figure out how the Discovery Collector could drive back and forth to vacuum up manure without getting blocked by cows. “In our early tests, we’d use sensors to have the robot stop to avoid running into any of the cows,” explains Jacobs. “But that meant that the robot became the weakest one in the hierarchy, and it would just end up crying in the corner because the cows wouldn’t move for it. So now, it doesn’t stop.”

One of the dirtiest jobs on a dairy farm is handled by the Discovery Collector, an autonomous manure vacuum. The robot relies on wheel odometry and ultrasonic sensors for navigation because it’s usually covered in manure.Evan Ackerman

“We make the robot drive slower for the first week, when it’s being introduced to a new herd,” adds Beltman. “That gives the cows time to figure out that the robot is at the top of the hierarchy.”

Besides maintaining their dominance at the top of the herd, the current generation of Lely robots doesn’t interact much with the cows, but that’s changing, Jacobs tells me. Right now, when a robot is driving through the barn, it makes a beeping sound to let the cows know it’s coming. Lely is looking into how to make these sounds more enjoyable for the cows. “This was a recent revelation for me,” Jacobs says. ”We’re not just designing interactions for humans. The cows are our users, too.”

Human-Robot Interaction

Last year, Jacobs and researchers from Delft University of Technology, in the Netherlands, presented a paper at the IEEE Human-Robot Interaction (HRI) Conference exploring this concept of robot behavior development on working dairy farms. The researchers visited robotic dairies, interviewed dairy farmers, and held workshops within Lely to establish a robot code of conduct—a guide that Lely’s designers and engineers use when considering how their robots should look, sound, and act, for the benefit of both humans and cows. On the engineering side, this includes practical things like colors and patterns for lights and different types of sounds so that information is communicated consistently across platforms.

But there’s much more nuance to making a robot seem “reliable” or “friendly” to the end user, since such things are not only difficult to define but also difficult to implement in a way that’s appropriate for dairy farmers, who prioritize functionality.

Jacobs doesn’t want his robots to try to be anyone’s friend—not the cow’s, and not the farmer’s. “The robot is an employee, and it should have a professional relationship,” he says. “So the robot might say ‘Hi,’ but it wouldn’t say, ‘How are you feeling today?’ ” What’s more important is that the robots are trustworthy. For Jacobs, instilling trust is simple: “You cannot gain trust by doing tricks. If your robot is reliable and predictable, people will trust it.”

The electrically driven, pneumatically balanced robotic arm that the Lely Astronaut uses to milk cows is designed to withstand accidental (or intentional) kicks.Lely

The real challenge, Jacobs explains, is that Lely is largely on its own when it comes to finding the best way of integrating its robots into the daily lives of people who may have never thought they’d have robot employees. “There’s not that much knowledge in the robot world about how to approach these problems,” Jacobs says. “We’re working with almost 20,000 farmers who have a bigger robot workforce than a human workforce. They’re robot managers. And I don’t know that there necessarily are other companies that have a customer base of normal people who have strategic dependence on robots for their livelihood. That is where we are now.”

From Dairy Farmers to Robot Managers

With the additional time and flexibility that the robots enable, some dairy farmers have been able to diversify. On our way back to Lely’s headquarters, we stop at Farm Het Lansingerland, owned by a Lely customer who has added a small restaurant and farm shop to his dairy. Large windows look into the barn so that restaurant patrons can watch the robots at work, caring for the cows that produce the cheese that’s on the menu. A self-guided tour takes you right up next to an Astronaut A5 milking robot, while signs on the floor warn of Vector feeding robots on the move. “This farmer couldn’t expand—this was as many cows as he’s allowed to have here,” Jacobs explains to me over cheese sandwiches. “So, he needs to have additional income streams. That’s why he started these other things. And the robots were essential for that.”

The farmer is an early adopter—someone who’s excited about the technology and actively interested in the robots themselves. But most of Lely’s tens of thousands of customers just want a reliable robotic employee, not a science project. “We help the farmer to prepare not just the environment for the robots, but also the mind,” explains Jacobs. “It’s a complete shift in their way of working.”

Besides managing the robots, the farmer must also learn to manage the massive amount of data that the robots generate about the cows. “The amount of data we get from the robots is a game changer,” says Rozum. “We can track milk production, health, and cow habits in real time. But it’s overwhelming. You could spend all day just sitting at the computer, looking at data and not get anything else done. It took us probably a year to really learn how to use it.”

The most significant advantages to farmers come from using the data for long-term optimization, says the University of Minnesota’s Endres. “In a conventional barn, the cows are treated as a group,” she says. “But the robots are collecting data about individual animals, which lets us manage them as individuals.” By combining data from a milking robot and a feeding robot, for example, farmers can close the loop, correlating when and how the cows are fed with their milk production. Lely is doing its best to simplify this type of decision making, says Jacobs. “You need to understand what the data means, and then you need to present it to the farmer in an actionable way.”

A Robotic Dairy
All dairy farms are different, and farms that decide to give robots a try will often start with just one or two. A highly roboticized dairy barn might look something like this illustration, with a team of many different robots working together to keep the cows comfortable and happy.

A: One Astronaut A5 robot can milk up to 60 cows. After the Astronaut cleans the teats, a laser sensor guides a robotic arm to attach the teat cups. Milking takes just a few minutes.

B: In the feed kitchen, the Vector robot recharges itself while different ingredients are loaded into its hopper and mixed together. Mixtures can be customized for different groups of cows.

C: The Vector robot dispenses freshly mixed food in small batches throughout the day. A laser measures the height of leftover food to make sure that the cows are getting the right amounts.

D: The Discovery Collector is a mop and vacuum for cow manure. It navigates the barn autonomously and returns to its docking station to remove waste, refill water, and wirelessly recharge.

E: As it milks, the Astronaut is collecting a huge amount of data—32 different parameters per teat. If it detects an issue, the farmer is notified, helping to catch health problems early.

F: Automated gates control meadow access and will keep a cow inside if she’s due to be milked soon. Cows are identified using RFID collars, which also track their behavior and health.

A Sensible Future for Dairy Robots

After lunch, we stop by Lely headquarters, where bright red life-size cow statues guard the entrance and all of the conference rooms are dairy themed. We get comfortable in Butter, and I ask Jacobs and Beltman what the future holds for their dairy robots.

In the near term, Lely is focused on making its existing robots more capable. Its latest feed-pushing robot is equipped with lidar and stereo cameras, which allow it to autonomously navigate around large farms without needing to follow a metal strip bolted to the ground. A new overhead camera system will leverage AI to recognize individual cows and track their behavior, while also providing farmers with an enormous new dataset that could allow Lely’s systems to help farmers make more nuanced decisions about cow welfare. The potential of AI is what Jacobs seems most excited about, although he’s cautious as well. “With AI, we’re suddenly going to take away an entirely different level of work. So, we’re thinking about doing research into the meaningfulness of work, to make sure that the things that we do with AI are the things that farmers want us to do with AI.”

“The idea of AI is very intriguing,” comments Rozum. “I think AI could help to simplify things for farmers. It would be a tool, a resource. But we know our cows best, and a farmer’s judgment has to be there too. There’s just some component of dairy farming that you cannot take the human out of. Robots are not going to be successful on a farm unless you have good farmers.”

Lely is aware of this and knows that its robots have to find the right balance between being helpful, and taking over. “We want to make sure not to take away the kinds of interactions that give dairy farmers joy in their work,” says Beltman. “Like feeding calves—every farmer likes to feed the calves.” Lely does sell an automated calf feeder that many dairy farmers buy, which illustrates the point: What’s the best way of designing robots to give humans the flexibility to do the work that they enjoy?

“This is where robotics is going,” Jacobs tells me as he gives me a lift to the train station. “As a human, you could have two other humans and six robots, and that’s your company.” Many industries, he says, look to robots with the objective of minimizing human involvement as much as possible so that the robots can generate the maximum amount of value for whoever happens to be in charge.

Dairy farms are different. Perhaps that’s because the person buying the robot is the person who most directly benefits from it. But I wonder if the concern over automation of jobs would be mitigated if more companies chose to emphasize the sustainability and joy of work equally with profit. Automation doesn’t have to be zero-sum—if implemented thoughtfully, perhaps robots can make work easier, more efficient, and more fun, too.

Jacobs certainly thinks so. “That’s my utopia,” he says. “And we’re working in the right direction.”



“Mooooo.”

This dairy barn is full of cows, as you might expect. Cows are being milked, cows are being fed, cows are being cleaned up after, and a few very happy cows are even getting vigorously scratched behind the ears. “I wonder where the farmer is,” remarks my guide, Jan Jacobs. Jacobs doesn’t seem especially worried, though—the several hundred cows in this barn are being well cared for by a small fleet of fully autonomous robots, and the farmer might not be back for hours. The robots will let him know if anything goes wrong.

At one of the milking robots, several cows are lined up, nose to tail, politely waiting their turn. The cows can get milked by robot whenever they like, which typically means more frequently than the twice a day at a traditional dairy farm. Not only is getting milked more often more comfortable for the cows, cows also produce about 10 percent more milk when the milking schedule is completely up to them.

“There’s a direct correlation between stress and milk production,” Jacobs says. “Which is nice, because robots make cows happier and therefore, they give more milk, which helps us sell more robots.”

Jan Jacobs is the human-robot interaction design lead for Lely, a maker of agricultural machinery. Founded in 1948 in Maassluis, Netherlands, Lely deployed its first Astronaut milking robot in the early 1990s. The company has since developed other robotic systems that assist with cleaning, feeding, and cow comfort, and the Astronaut milking robot is on its fifth generation. Lely is now focused entirely on robots for dairy farms, with around 135,000 of them deployed around the world.

Essential Jobs on Dairy Farms

The weather outside the barn is miserable. It’s late fall in the Netherlands, and a cold rain is gusting in from the sea, which is probably why the cows have quite sensibly decided to stay indoors and why the farmer is still nowhere to be found. Lely requires that dairy farmers who adopt its robots commit to letting their cows move freely between milking, feeding, and resting, as well as inside and outside the barn, at their own pace. “We believe that free cow traffic is a core part of the future of farming,” Jacobs says as we watch one cow stroll away from the milking robot while another takes its place. This is possible only when the farm operates on the cows’ schedule rather than a human’s.

A conventional dairy farm relies heavily on human labor. Lely estimates that repetitive daily tasks represent about a third of the average workday of a dairy farmer. In the morning, the cows are milked for the first time. Most dairy cows must be milked at least twice a day or they’ll become uncomfortable, and so the herd will line up on their own. Traditional milking parlors are designed to maximize human milking efficiency. A milking carousel, for instance, slowly rotates cows as they’re milked so that the dairy worker doesn’t have to move between stalls.

“We were spending 6 hours a day milking,” explains dairy farmer Josie Rozum, whose 120-cow herd at Takes Dairy Farm uses a pair of Astronaut A5 milking robots. “Now that the robots are handling all of that, we can focus more on animal care and comfort.”Lely

An experienced human using well-optimized equipment can attach a milking machine to a cow in just 20 to 30 seconds. The actual milking takes only a few minutes, but with the average small dairy farm in North America providing a home for several hundred cows, milking typically represents a time commitment of 4 to 6 hours per day.

There are other jobs that must be done every day at a dairy. Cows are happier with continuous access to food, which means feeding them several times a day. The feed is a mix of roughage (hay), silage (grass), and grain. The cows will eat all of this, but they prefer the grain, and so it’s common to see cows sorting their food by grabbing a mouthful and throwing it up into the air. The lighter roughage and silage flies farther than the grain does, leaving the cow with a pile of the tastier stuff as the rest gets tossed out of reach. This makes “feed pushing” necessary to shove the rest of the feed back within reach of the cow.

And of course there’s manure. A dairy cow produces an average of 68 kilograms of manure a day. All that manure has to be collected and the barn floors regularly cleaned.

Dairy Industry 4.0

The amount of labor needed to operate a dairy meant that until the early 1900s, most family farms could support only about eight cows. The introduction of the first milking machines, called bucket milkers, helped farmers milk 10 cows per hour instead of 4 by the mid-1920s. Rural electrification furthered dairy automation starting in the 1950s, and since then, both farm size and milk production have increased steadily. In the 1930s, a good dairy cow produced 3,600 kilograms of milk per year. Today, it’s almost 11,000 kilograms, and Lely believes that robots are what will enable small dairy farms to continue to scale sustainably.

Lely

But dairy robots are expensive. A milking robot can cost several hundred thousand dollars, plus an additional US $5,000 to $10,000 per year in operating costs. The Astronaut A5, Lely’s latest milking robot, uses a laser-guided robot arm to clean the cow’s udder before attaching teat cups one at a time. While the cow munches on treats, the Astronaut monitors her milk output, collecting data on 32 parameters, including indicators of the quality of the milk and the health of the cow. When milking is complete, the robot cleans the udder again, and the cow is free to leave as the robot steam cleans itself in preparation for the next cow.

Lely argues that although the initial cost is higher than that of a traditional milking parlor, the robots pay for themselves over time through higher milk production (due primarily to increased milking frequency) and lower labor costs. Lely’s other robots can also save on labor. The Vector mobile robot handles continuous feeding and feed pushing, and the Discovery Collector is a robotic manure vacuum that keeps the floors clean.

At Takes Dairy Farm, Rozum and her family used to spend several hours per day managing food for the cows. “The feeding robot is another amazing piece of the puzzle for our farm that allows us to focus on other things.”Takes Family Farm

For most dairy farmers, though, making more money is not the main reason to get a robot, explains Marcia Endres, a professor in the department of animal science at the University of Minnesota. Endres specializes in dairy-cattle management, behavior, and welfare, and studies dairy robot adoption. “When we first started doing research on this about 12 years ago, most of the farms that were installing robots were smaller farms that did not want to hire employees,” Endres says. “They wanted to do the work just with family labor, but they also wanted to have more flexibility with their time. They wanted a better lifestyle.”

Flexibility was key for the Takes family, who added Lely robots to their dairy farm in Ely, Iowa, four years ago. “When we had our old milking parlor, everything that we did as a family was always scheduled around milking,” says Josie Rozum, who manages the farm and a creamery along with her parents—Dan and Debbie Takes—and three brothers. “With the robots, we can prioritize our personal life a little bit more—we can spend time together on Christmas morning and know that the cows are still getting milked.”

Takes Family Dairy Farm’s 120-cow herd is milked by a pair of Astronaut A5 robots, with a Vector and three Discovery Collectors for feeding and cleaning. “They’ve become a crucial part of the team,” explains Rozum. “It would be challenging for us to find outside help, and the robots keep things running smoothly.” The robots also add sustainability to small dairy farms, and not just in the short term. “Growing up on the farm, we experienced the hard work, and we saw what that commitment did to our parents,” Rozum explains. “It’s a very tough lifestyle. Having the robots take over a little bit of that has made dairy farming more appealing to our generation.”

Takes Dairy Farm

Of the 25,000 dairy farms in the United States, Endres estimates about 10 percent have robots. This is about a third of the adoption rate in Europe, where farms tend to be smaller, so the cost of implementing the robots is lower. Endres says that over the last five years, she’s seen a shift toward robot adoption at larger farms with over 500 cows, due primarily to labor shortages. “These larger dairies are having difficulty finding employees who want to milk cows—it’s a very tedious job. And the robot is always consistent. The farmers tell me, ‘My robot never calls in sick, and never shows up drunk.’ ”

Endres is skeptical of Lely’s claim that its robots are responsible for increased milk production. “There is no research that proves that cows will be more productive just because of robots,” she says. It may be true that farms that add robots do see increased milk production, she adds, but it’s difficult to measure the direct effect that the robots have. “I have many dairies that I work with where they have both a robotic milking system and a conventional milking system, and if they are managing their cows well, there isn’t a lot of difference in milk production.”

The Lely Luna cow brush helps to keep cows’ skin healthy. It’s also relaxing and enjoyable, so cows will brush themselves several times a day.Lely

The robots do seem to improve the cows’ lives, however. “Welfare is not just productivity and health—it’s also the affective state, the ability to have a more natural life,” Endres says. “Again, it’s hard to measure, but I think that on most of these robot farms, their affective state is improved.” The cows’ relationship with humans changes too, comments Endres. When the cows no longer associate humans with being told where to go and what to do all the time, they’re much more relaxed and friendly toward people they meet. Rozum agrees. “We’ve noticed a tremendous change in our cows’ demeanor. They’re more calm and relaxed, just doing their thing in the barn. They’re much more comfortable when they can choose what to do.”

Cows Versus Robots

Cows are curious and clever animals, and have the same instinct that humans have when confronted with a new robot: They want to play with it. Because of this, Lely has had to cow-proof its robots, modifying their design and programming so that the machines can function autonomously around cows. Like many mobile robots, Lely’s dairy robots include contact-sensing bumpers that will pause the robot’s motion if it runs into something. On the Vector feeding robot, Lely product engineer René Beltman tells me, they had to add a software option to disable the bumper. “The cows learned that, ‘oh, if I just push the bumper, then the robot will stop and put down more feed in my area for me to eat.’ It was a free buffet. So you don’t want the cows to end up controlling the robot.” Emergency stop buttons had to be relocated so that they couldn’t be pressed by questing cow tongues.

There’s also a social component to cow-robot interaction. Within their herd, cows have a well-established hierarchy, and the robots need to work within this hierarchy to do their jobs. For example, a cow won’t move out of the way if it thinks that another cow is lower in the hierarchy than it is, and it will treat a robot the same way. The engineers had to figure out how the Discovery Collector could drive back and forth to vacuum up manure without getting blocked by cows. “In our early tests, we’d use sensors to have the robot stop to avoid running into any of the cows,” explains Jacobs. “But that meant that the robot became the weakest one in the hierarchy, and it would just end up crying in the corner because the cows wouldn’t move for it. So now, it doesn’t stop.”

One of the dirtiest jobs on a dairy farm is handled by the Discovery Collector, an autonomous manure vacuum. The robot relies on wheel odometry and ultrasonic sensors for navigation because it’s usually covered in manure.Evan Ackerman

“We make the robot drive slower for the first week, when it’s being introduced to a new herd,” adds Beltman. “That gives the cows time to figure out that the robot is at the top of the hierarchy.”

Besides maintaining their dominance at the top of the herd, the current generation of Lely robots doesn’t interact much with the cows, but that’s changing, Jacobs tells me. Right now, when a robot is driving through the barn, it makes a beeping sound to let the cows know it’s coming. Lely is looking into how to make these sounds more enjoyable for the cows. “This was a recent revelation for me,” Jacobs says. ”We’re not just designing interactions for humans. The cows are our users, too.”

Human-Robot Interaction

Last year, Jacobs and researchers from Delft University of Technology, in the Netherlands, presented a paper at the IEEE Human-Robot Interaction (HRI) Conference exploring this concept of robot behavior development on working dairy farms. The researchers visited robotic dairies, interviewed dairy farmers, and held workshops within Lely to establish a robot code of conduct—a guide that Lely’s designers and engineers use when considering how their robots should look, sound, and act, for the benefit of both humans and cows. On the engineering side, this includes practical things like colors and patterns for lights and different types of sounds so that information is communicated consistently across platforms.

But there’s much more nuance to making a robot seem “reliable” or “friendly” to the end user, since such things are not only difficult to define but also difficult to implement in a way that’s appropriate for dairy farmers, who prioritize functionality.

Jacobs doesn’t want his robots to try to be anyone’s friend—not the cow’s, and not the farmer’s. “The robot is an employee, and it should have a professional relationship,” he says. “So the robot might say ‘Hi,’ but it wouldn’t say, ‘How are you feeling today?’ ” What’s more important is that the robots are trustworthy. For Jacobs, instilling trust is simple: “You cannot gain trust by doing tricks. If your robot is reliable and predictable, people will trust it.”

The electrically driven, pneumatically balanced robotic arm that the Lely Astronaut uses to milk cows is designed to withstand accidental (or intentional) kicks.Lely

The real challenge, Jacobs explains, is that Lely is largely on its own when it comes to finding the best way of integrating its robots into the daily lives of people who may have never thought they’d have robot employees. “There’s not that much knowledge in the robot world about how to approach these problems,” Jacobs says. “We’re working with almost 20,000 farmers who have a bigger robot workforce than a human workforce. They’re robot managers. And I don’t know that there necessarily are other companies that have a customer base of normal people who have strategic dependence on robots for their livelihood. That is where we are now.”

From Dairy Farmers to Robot Managers

With the additional time and flexibility that the robots enable, some dairy farmers have been able to diversify. On our way back to Lely’s headquarters, we stop at Farm Het Lansingerland, owned by a Lely customer who has added a small restaurant and farm shop to his dairy. Large windows look into the barn so that restaurant patrons can watch the robots at work, caring for the cows that produce the cheese that’s on the menu. A self-guided tour takes you right up next to an Astronaut A5 milking robot, while signs on the floor warn of Vector feeding robots on the move. “This farmer couldn’t expand—this was as many cows as he’s allowed to have here,” Jacobs explains to me over cheese sandwiches. “So, he needs to have additional income streams. That’s why he started these other things. And the robots were essential for that.”

The farmer is an early adopter—someone who’s excited about the technology and actively interested in the robots themselves. But most of Lely’s tens of thousands of customers just want a reliable robotic employee, not a science project. “We help the farmer to prepare not just the environment for the robots, but also the mind,” explains Jacobs. “It’s a complete shift in their way of working.”

Besides managing the robots, the farmer must also learn to manage the massive amount of data that the robots generate about the cows. “The amount of data we get from the robots is a game changer,” says Rozum. “We can track milk production, health, and cow habits in real time. But it’s overwhelming. You could spend all day just sitting at the computer, looking at data and not get anything else done. It took us probably a year to really learn how to use it.”

The most significant advantages to farmers come from using the data for long-term optimization, says the University of Minnesota’s Endres. “In a conventional barn, the cows are treated as a group,” she says. “But the robots are collecting data about individual animals, which lets us manage them as individuals.” By combining data from a milking robot and a feeding robot, for example, farmers can close the loop, correlating when and how the cows are fed with their milk production. Lely is doing its best to simplify this type of decision making, says Jacobs. “You need to understand what the data means, and then you need to present it to the farmer in an actionable way.”

A Robotic Dairy
All dairy farms are different, and farms that decide to give robots a try will often start with just one or two. A highly roboticized dairy barn might look something like this illustration, with a team of many different robots working together to keep the cows comfortable and happy.

A: One Astronaut A5 robot can milk up to 60 cows. After the Astronaut cleans the teats, a laser sensor guides a robotic arm to attach the teat cups. Milking takes just a few minutes.

B: In the feed kitchen, the Vector robot recharges itself while different ingredients are loaded into its hopper and mixed together. Mixtures can be customized for different groups of cows.

C: The Vector robot dispenses freshly mixed food in small batches throughout the day. A laser measures the height of leftover food to make sure that the cows are getting the right amounts.

D: The Discovery Collector is a mop and vacuum for cow manure. It navigates the barn autonomously and returns to its docking station to remove waste, refill water, and wirelessly recharge.

E: As it milks, the Astronaut is collecting a huge amount of data—32 different parameters per teat. If it detects an issue, the farmer is notified, helping to catch health problems early.

F: Automated gates control meadow access and will keep a cow inside if she’s due to be milked soon. Cows are identified using RFID collars, which also track their behavior and health.

A Sensible Future for Dairy Robots

After lunch, we stop by Lely headquarters, where bright red life-size cow statues guard the entrance and all of the conference rooms are dairy themed. We get comfortable in Butter, and I ask Jacobs and Beltman what the future holds for their dairy robots.

In the near term, Lely is focused on making its existing robots more capable. Its latest feed-pushing robot is equipped with lidar and stereo cameras, which allow it to autonomously navigate around large farms without needing to follow a metal strip bolted to the ground. A new overhead camera system will leverage AI to recognize individual cows and track their behavior, while also providing farmers with an enormous new dataset that could allow Lely’s systems to help farmers make more nuanced decisions about cow welfare. The potential of AI is what Jacobs seems most excited about, although he’s cautious as well. “With AI, we’re suddenly going to take away an entirely different level of work. So, we’re thinking about doing research into the meaningfulness of work, to make sure that the things that we do with AI are the things that farmers want us to do with AI.”

“The idea of AI is very intriguing,” comments Rozum. “I think AI could help to simplify things for farmers. It would be a tool, a resource. But we know our cows best, and a farmer’s judgment has to be there too. There’s just some component of dairy farming that you cannot take the human out of. Robots are not going to be successful on a farm unless you have good farmers.”

Lely is aware of this and knows that its robots have to find the right balance between being helpful, and taking over. “We want to make sure not to take away the kinds of interactions that give dairy farmers joy in their work,” says Beltman. “Like feeding calves—every farmer likes to feed the calves.” Lely does sell an automated calf feeder that many dairy farmers buy, which illustrates the point: What’s the best way of designing robots to give humans the flexibility to do the work that they enjoy?

“This is where robotics is going,” Jacobs tells me as he gives me a lift to the train station. “As a human, you could have two other humans and six robots, and that’s your company.” Many industries, he says, look to robots with the objective of minimizing human involvement as much as possible so that the robots can generate the maximum amount of value for whoever happens to be in charge.

Dairy farms are different. Perhaps that’s because the person buying the robot is the person who most directly benefits from it. But I wonder if the concern over automation of jobs would be mitigated if more companies chose to emphasize the sustainability and joy of work equally with profit. Automation doesn’t have to be zero-sum—if implemented thoughtfully, perhaps robots can make work easier, more efficient, and more fun, too.

Jacobs certainly thinks so. “That’s my utopia,” he says. “And we’re working in the right direction.”



This is a sponsored article brought to you by Freudenberg Sealing Technologies.

The increasing deployment of collaborative robots (cobots) in outdoor environments presents significant engineering challenges, requiring highly advanced sealing solutions to ensure reliability and durability. Unlike industrial robots that operate in controlled indoor environments, outdoor cobots are exposed to extreme weather conditions that can compromise their mechanical integrity. Maintenance robots used in servicing wind turbines, for example, must endure intense temperature fluctuations, high humidity, prolonged UV radiation exposure, and powerful wind loads. Similarly, agricultural robots operate in harsh conditions where they are continuously exposed to abrasive dust, chemically aggressive fertilizers and pesticides, and mechanical stresses from rough terrains.

To ensure these robotic systems maintain long-term functionality, sealing solutions must offer effective protection against environmental ingress, mechanical wear, corrosion, and chemical degradation. Outdoor robots must perform flawlessly in temperature ranges spanning from scorching heat to freezing cold while withstanding constant exposure to moisture, lubricants, solvents, and other contaminants. In addition, sealing systems must be resilient to continuous vibrations and mechanical shocks, which are inherent to robotic motion and can accelerate material fatigue over time.

Comprehensive Technical Requirements for Robotic Sealing Solutions

The development of sealing solutions for outdoor robotics demands an intricate balance of durability, flexibility, and resistance to wear. Robotic joints, particularly those in high-mobility systems, experience multidirectional movements within confined installation spaces, making the selection of appropriate sealing materials and geometries crucial. Traditional elastomeric O-rings, widely used in industrial applications, often fail under such extreme conditions. Exposure to high temperatures can cause thermal degradation, while continuous mechanical stress accelerates fatigue, leading to early seal failure. Chemical incompatibility with lubricants, fuels, and cleaning agents further contributes to material degradation, shortening operational lifespans.

Friction-related wear is another critical concern, especially in robotic joints that operate at high speeds. Excessive friction not only generates heat but can also affect movement precision. In collaborative robotics, where robots work alongside humans, such inefficiencies pose safety risks by delaying response times and reducing motion accuracy. Additionally, prolonged exposure to UV radiation can cause conventional sealing materials to become brittle and crack, further compromising their performance.

Advanced IPSR Technology: Tailored for Cobots

To address these demanding conditions, Freudenberg Sealing Technologies has developed a specialized sealing solution: Ingress Protection Seals for Robots (IPSR). Unlike conventional seals that rely on metallic springs for mechanical support, the IPSR design features an innovative Z-shaped geometry that dynamically adapts to the axial and radial movements typical in robotic joints.

Numerous seals are required in cobots and these are exposed to high speeds and forces.Freudenberg Sealing Technologies

This unique structural design distributes mechanical loads more efficiently, significantly reducing friction and wear over time. While traditional spring-supported seals tend to degrade due to mechanical fatigue, the IPSR configuration eliminates this limitation, ensuring long-lasting performance. Additionally, the optimized contact pressure reduces frictional forces in robotic joints, thereby minimizing heat generation and extending component lifespans. This results in lower maintenance requirements, a crucial factor in applications where downtime can lead to significant operational disruptions.

Optimized Through Advanced Simulation Techniques

The development of IPSR technology relied extensively on Finite Element Analysis (FEA) simulations to optimize seal geometries, material selection, and surface textures before physical prototyping. These advanced computational techniques allowed engineers to predict and enhance seal behavior under real-world operational conditions.

FEA simulations focused on key performance factors such as frictional forces, contact pressure distribution, deformation under load, and long-term fatigue resistance. By iteratively refining the design based on simulation data, Freudenberg engineers were able to develop a sealing solution that balances minimal friction with maximum durability.

Furthermore, these simulations provided insights into how IPSR seals would perform under extreme conditions, including exposure to humidity, rapid temperature changes, and prolonged mechanical stress. This predictive approach enabled early detection of potential failure points, allowing for targeted improvements before mass production. By reducing the need for extensive physical testing, Freudenberg was able to accelerate the development cycle while ensuring high-performance reliability.

Material Innovations: Superior Resistance and Longevity

The effectiveness of a sealing solution is largely determined by its material composition. Freudenberg utilizes advanced elastomeric compounds, including Fluoroprene XP and EPDM, both selected for their exceptional chemical resistance, mechanical strength, and thermal stability.

Fluoroprene XP, in particular, offers superior resistance to aggressive chemicals, including solvents, lubricants, fuels, and industrial cleaning agents. Additionally, its resilience against ozone and UV radiation makes it an ideal choice for outdoor applications where continuous exposure to sunlight could otherwise lead to material degradation. EPDM, on the other hand, provides outstanding flexibility at low temperatures and excellent aging resistance, making it suitable for applications that require long-term durability under fluctuating environmental conditions.

To further enhance performance, Freudenberg applies specialized solid-film lubricant coatings to IPSR seals. These coatings significantly reduce friction and eliminate stick-slip effects, ensuring smooth robotic motion and precise movement control. This friction management not only improves energy efficiency but also enhances the overall responsiveness of robotic systems, an essential factor in high-precision automation.

Extensive Validation Through Real-World Testing

While advanced simulations provide critical insights into seal behavior, empirical testing remains essential for validating real-world performance. Freudenberg subjected IPSR seals to rigorous durability tests, including prolonged exposure to moisture, dust, temperature cycling, chemical immersion, and mechanical vibration.

Throughout these tests, IPSR seals consistently achieved IP65 certification, demonstrating their ability to effectively prevent environmental contaminants from compromising robotic components. Real-world deployment in maintenance robotics for wind turbines and agricultural automation further confirmed their reliability, with extensive wear analysis showing significantly extended operational lifetimes compared to traditional sealing technologies.

Safety Through Advanced Friction Management

In collaborative robotics, sealing performance plays a direct role in operational safety. Excessive friction in robotic joints can delay emergency-stop responses and reduce motion precision, posing potential hazards in human-robot interaction. By incorporating low-friction coatings and optimized sealing geometries, Freudenberg ensures that robotic systems respond rapidly and accurately, enhancing workplace safety and efficiency.

Tailored Sealing Solutions for Various Robotic Systems

Freudenberg Sealing Technologies provides customized sealing solutions across a wide range of robotic applications, ensuring optimal performance in diverse environments.

Automated Guided Vehicles (AGVs) operate in industrial settings where they are exposed to abrasive contaminants, mechanical vibrations, and chemical exposure. Freudenberg employs reinforced PTFE composites to enhance durability and protect internal components.

Delta robots can perform complex movements at high speed. This requires seals that meet the high dynamic and acceleration requirements.Freudenberg Sealing Technologies

Delta robots, commonly used in food processing, pharmaceuticals, and precision electronics, require FDA-compliant materials that withstand rigorous cleaning procedures such as Cleaning-In-Place (CIP) and Sterilization-In-Place (SIP). Freudenberg utilizes advanced fluoropolymers that maintain structural integrity under aggressive sanitation processes.

Seals for Scara robots must have high chemical resistance, compressive strength and thermal resistance to function reliably in a variety of industrial environments.Freudenberg Sealing Technologies

SCARA robots benefit from Freudenberg’s Modular Plastic Sealing Concept (MPSC), which integrates sealing, bearing support, and vibration damping within a compact, lightweight design. This innovation optimizes robot weight distribution and extends component service life.

Six-axis robots used in automotive, aerospace, and electronics manufacturing require sealing solutions capable of withstanding high-speed operations, mechanical stress, and chemical exposure. Freudenberg’s Premium Sine Seal (PSS), featuring reinforced PTFE liners and specialized elastomer compounds, ensures maximum durability and minimal friction losses.

Continuous Innovation for Future Robotic Applications

Freudenberg Sealing Technologies remains at the forefront of innovation, continuously developing new materials, sealing designs, and validation methods to address evolving challenges in robotics. Through strategic customer collaborations, cutting-edge material science, and state-of-the-art simulation technologies, Freudenberg ensures that its sealing solutions provide unparalleled reliability, efficiency, and safety across all robotic platforms.



This is a sponsored article brought to you by Freudenberg Sealing Technologies.

The increasing deployment of collaborative robots (cobots) in outdoor environments presents significant engineering challenges, requiring highly advanced sealing solutions to ensure reliability and durability. Unlike industrial robots that operate in controlled indoor environments, outdoor cobots are exposed to extreme weather conditions that can compromise their mechanical integrity. Maintenance robots used in servicing wind turbines, for example, must endure intense temperature fluctuations, high humidity, prolonged UV radiation exposure, and powerful wind loads. Similarly, agricultural robots operate in harsh conditions where they are continuously exposed to abrasive dust, chemically aggressive fertilizers and pesticides, and mechanical stresses from rough terrains.

To ensure these robotic systems maintain long-term functionality, sealing solutions must offer effective protection against environmental ingress, mechanical wear, corrosion, and chemical degradation. Outdoor robots must perform flawlessly in temperature ranges spanning from scorching heat to freezing cold while withstanding constant exposure to moisture, lubricants, solvents, and other contaminants. In addition, sealing systems must be resilient to continuous vibrations and mechanical shocks, which are inherent to robotic motion and can accelerate material fatigue over time.

Comprehensive Technical Requirements for Robotic Sealing Solutions

The development of sealing solutions for outdoor robotics demands an intricate balance of durability, flexibility, and resistance to wear. Robotic joints, particularly those in high-mobility systems, experience multidirectional movements within confined installation spaces, making the selection of appropriate sealing materials and geometries crucial. Traditional elastomeric O-rings, widely used in industrial applications, often fail under such extreme conditions. Exposure to high temperatures can cause thermal degradation, while continuous mechanical stress accelerates fatigue, leading to early seal failure. Chemical incompatibility with lubricants, fuels, and cleaning agents further contributes to material degradation, shortening operational lifespans.

Friction-related wear is another critical concern, especially in robotic joints that operate at high speeds. Excessive friction not only generates heat but can also affect movement precision. In collaborative robotics, where robots work alongside humans, such inefficiencies pose safety risks by delaying response times and reducing motion accuracy. Additionally, prolonged exposure to UV radiation can cause conventional sealing materials to become brittle and crack, further compromising their performance.

Advanced IPSR Technology: Tailored for Cobots

To address these demanding conditions, Freudenberg Sealing Technologies has developed a specialized sealing solution: Ingress Protection Seals for Robots (IPSR). Unlike conventional seals that rely on metallic springs for mechanical support, the IPSR design features an innovative Z-shaped geometry that dynamically adapts to the axial and radial movements typical in robotic joints.

Numerous seals are required in cobots and these are exposed to high speeds and forces.Freudenberg Sealing Technologies

This unique structural design distributes mechanical loads more efficiently, significantly reducing friction and wear over time. While traditional spring-supported seals tend to degrade due to mechanical fatigue, the IPSR configuration eliminates this limitation, ensuring long-lasting performance. Additionally, the optimized contact pressure reduces frictional forces in robotic joints, thereby minimizing heat generation and extending component lifespans. This results in lower maintenance requirements, a crucial factor in applications where downtime can lead to significant operational disruptions.

Optimized Through Advanced Simulation Techniques

The development of IPSR technology relied extensively on Finite Element Analysis (FEA) simulations to optimize seal geometries, material selection, and surface textures before physical prototyping. These advanced computational techniques allowed engineers to predict and enhance seal behavior under real-world operational conditions.

FEA simulations focused on key performance factors such as frictional forces, contact pressure distribution, deformation under load, and long-term fatigue resistance. By iteratively refining the design based on simulation data, Freudenberg engineers were able to develop a sealing solution that balances minimal friction with maximum durability.

Furthermore, these simulations provided insights into how IPSR seals would perform under extreme conditions, including exposure to humidity, rapid temperature changes, and prolonged mechanical stress. This predictive approach enabled early detection of potential failure points, allowing for targeted improvements before mass production. By reducing the need for extensive physical testing, Freudenberg was able to accelerate the development cycle while ensuring high-performance reliability.

Material Innovations: Superior Resistance and Longevity

The effectiveness of a sealing solution is largely determined by its material composition. Freudenberg utilizes advanced elastomeric compounds, including Fluoroprene XP and EPDM, both selected for their exceptional chemical resistance, mechanical strength, and thermal stability.

Fluoroprene XP, in particular, offers superior resistance to aggressive chemicals, including solvents, lubricants, fuels, and industrial cleaning agents. Additionally, its resilience against ozone and UV radiation makes it an ideal choice for outdoor applications where continuous exposure to sunlight could otherwise lead to material degradation. EPDM, on the other hand, provides outstanding flexibility at low temperatures and excellent aging resistance, making it suitable for applications that require long-term durability under fluctuating environmental conditions.

To further enhance performance, Freudenberg applies specialized solid-film lubricant coatings to IPSR seals. These coatings significantly reduce friction and eliminate stick-slip effects, ensuring smooth robotic motion and precise movement control. This friction management not only improves energy efficiency but also enhances the overall responsiveness of robotic systems, an essential factor in high-precision automation.

Extensive Validation Through Real-World Testing

While advanced simulations provide critical insights into seal behavior, empirical testing remains essential for validating real-world performance. Freudenberg subjected IPSR seals to rigorous durability tests, including prolonged exposure to moisture, dust, temperature cycling, chemical immersion, and mechanical vibration.

Throughout these tests, IPSR seals consistently achieved IP65 certification, demonstrating their ability to effectively prevent environmental contaminants from compromising robotic components. Real-world deployment in maintenance robotics for wind turbines and agricultural automation further confirmed their reliability, with extensive wear analysis showing significantly extended operational lifetimes compared to traditional sealing technologies.

Safety Through Advanced Friction Management

In collaborative robotics, sealing performance plays a direct role in operational safety. Excessive friction in robotic joints can delay emergency-stop responses and reduce motion precision, posing potential hazards in human-robot interaction. By incorporating low-friction coatings and optimized sealing geometries, Freudenberg ensures that robotic systems respond rapidly and accurately, enhancing workplace safety and efficiency.

Tailored Sealing Solutions for Various Robotic Systems

Freudenberg Sealing Technologies provides customized sealing solutions across a wide range of robotic applications, ensuring optimal performance in diverse environments.

Automated Guided Vehicles (AGVs) operate in industrial settings where they are exposed to abrasive contaminants, mechanical vibrations, and chemical exposure. Freudenberg employs reinforced PTFE composites to enhance durability and protect internal components.

Delta robots can perform complex movements at high speed. This requires seals that meet the high dynamic and acceleration requirements.Freudenberg Sealing Technologies

Delta robots, commonly used in food processing, pharmaceuticals, and precision electronics, require FDA-compliant materials that withstand rigorous cleaning procedures such as Cleaning-In-Place (CIP) and Sterilization-In-Place (SIP). Freudenberg utilizes advanced fluoropolymers that maintain structural integrity under aggressive sanitation processes.

Seals for Scara robots must have high chemical resistance, compressive strength and thermal resistance to function reliably in a variety of industrial environments.Freudenberg Sealing Technologies

SCARA robots benefit from Freudenberg’s Modular Plastic Sealing Concept (MPSC), which integrates sealing, bearing support, and vibration damping within a compact, lightweight design. This innovation optimizes robot weight distribution and extends component service life.

Six-axis robots used in automotive, aerospace, and electronics manufacturing require sealing solutions capable of withstanding high-speed operations, mechanical stress, and chemical exposure. Freudenberg’s Premium Sine Seal (PSS), featuring reinforced PTFE liners and specialized elastomer compounds, ensures maximum durability and minimal friction losses.

Continuous Innovation for Future Robotic Applications

Freudenberg Sealing Technologies remains at the forefront of innovation, continuously developing new materials, sealing designs, and validation methods to address evolving challenges in robotics. Through strategic customer collaborations, cutting-edge material science, and state-of-the-art simulation technologies, Freudenberg ensures that its sealing solutions provide unparalleled reliability, efficiency, and safety across all robotic platforms.



A new prototype is laying claim to the title of smallest, lightest untethered flying robot.

At less than a centimeter in wingspan, the wirelessly powered robot is currently very limited in how far it can travel away from the magnetic fields that drive its flight. However, the scientists who developed it suggest there are ways to boost its range, which could lead to potential applications such as search and rescue operations, inspecting damaged machinery in industrial settings, and even plant pollination.

One strategy to shrink flying robots involves removing their batteries and supplying them electricity using tethers. However, tethered flying robots face problems operating freely in complex environments. This has led some researchers to explore wireless methods of powering robot flight.

“The dream was to make flying robots to fly anywhere and anytime without using an electrical wire for the power source,” says Liwei Lin, a professor of mechanical engineering at University of California at Berkeley. Lin and his fellow researchers detailed their findings in Science Advances.

3D-Printed Flying Robot Design

Each flying robot has a 3D-printed body that consists of a propeller with four blades. This rotor is encircled by a ring that helps the robot stay balanced during flight. On top of each body are two tiny permanent magnets.

All in all, the insect-scale prototypes have wingspans as small as 9.4 millimeters and weigh as little as 21 milligrams. Previously, the smallest reported flying robot, either tethered or untethered, was 28 millimeters wide.

When exposed to an external alternating magnetic field, the robots spin and fly without tethers. The lowest magnetic field strength needed to maintain flight is 3.1 millitesla. (In comparison, a refrigerator magnet has a strength of about 10 mT.)

When the applied magnetic field alternates with a frequency of 310 hertz, the robots can hover. At 340 Hz, they accelerate upward. The researchers could steer the robots laterally by adjusting the applied magnetic fields. The robots could also right themselves after collisions to stay airborne without complex sensing or controlling electronics, as long as the impacts were not too large.

Experiments show the lift force the robots generate can exceed their weight by 14 percent, to help them carry payloads. For instance, a prototype that’s 20.5 millimeters wide and weighing 162.4 milligrams could carry an infrared sensor weighing 110 mg to scan its environment. The robots proved efficient at converting the energy given them into lift force—better than nearly all other reported flying robots, tethered or untethered, and also better than fruit flies and hummingbirds.

Currently the maximum operating range of these prototypes is about 10 centimeters away from the magnetic coils. One way to extend the operating range of these robots is to increase the magnetic field strength they experience tenfold by adding more coils, optimizing the configuration of these coils, and using beamforming coils, Lin notes. Such developments could allow the robots to fly up to a meter away from the magnetic coils.

The scientists could also miniaturize the robots even further. This would make them lighter, and so reduce the magnetic field strength they need for propulsion. “It could be possible to drive micro flying robots using electromagnetic waves such as those in radio or cell phone transmission signals,” Lin says. Future research could also place devices that can convert magnetic energy to electricity onboard the robots to power electronic components, the researchers add.



A new prototype is laying claim to the title of smallest, lightest untethered flying robot.

At less than a centimeter in wingspan, the wirelessly powered robot is currently very limited in how far it can travel away from the magnetic fields that drive its flight. However, the scientists who developed it suggest there are ways to boost its range, which could lead to potential applications such as search and rescue operations, inspecting damaged machinery in industrial settings, and even plant pollination.

One strategy to shrink flying robots involves removing their batteries and supplying them electricity using tethers. However, tethered flying robots face problems operating freely in complex environments. This has led some researchers to explore wireless methods of powering robot flight.

“The dream was to make flying robots to fly anywhere and anytime without using an electrical wire for the power source,” says Liwei Lin, a professor of mechanical engineering at University of California at Berkeley. Lin and his fellow researchers detailed their findings in Science Advances.

3D-Printed Flying Robot Design

Each flying robot has a 3D-printed body that consists of a propeller with four blades. This rotor is encircled by a ring that helps the robot stay balanced during flight. On top of each body are two tiny permanent magnets.

All in all, the insect-scale prototypes have wingspans as small as 9.4 millimeters and weigh as little as 21 milligrams. Previously, the smallest reported flying robot, either tethered or untethered, was 28 millimeters wide.

When exposed to an external alternating magnetic field, the robots spin and fly without tethers. The lowest magnetic field strength needed to maintain flight is 3.1 millitesla. (In comparison, a refrigerator magnet has a strength of about 10 mT.)

When the applied magnetic field alternates with a frequency of 310 hertz, the robots can hover. At 340 Hz, they accelerate upward. The researchers could steer the robots laterally by adjusting the applied magnetic fields. The robots could also right themselves after collisions to stay airborne without complex sensing or controlling electronics, as long as the impacts were not too large.

Experiments show the lift force the robots generate can exceed their weight by 14 percent, to help them carry payloads. For instance, a prototype that’s 20.5 millimeters wide and weighing 162.4 milligrams could carry an infrared sensor weighing 110 mg to scan its environment. The robots proved efficient at converting the energy given them into lift force—better than nearly all other reported flying robots, tethered or untethered, and also better than fruit flies and hummingbirds.

Currently the maximum operating range of these prototypes is about 10 centimeters away from the magnetic coils. One way to extend the operating range of these robots is to increase the magnetic field strength they experience tenfold by adding more coils, optimizing the configuration of these coils, and using beamforming coils, Lin notes. Such developments could allow the robots to fly up to a meter away from the magnetic coils.

The scientists could also miniaturize the robots even further. This would make them lighter, and so reduce the magnetic field strength they need for propulsion. “It could be possible to drive micro flying robots using electromagnetic waves such as those in radio or cell phone transmission signals,” Lin says. Future research could also place devices that can convert magnetic energy to electricity onboard the robots to power electronic components, the researchers add.



Your weekly selection of awesome robot videos

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLANDICUAS 2025: 14–17 May 2025, CHARLOTTE, NCICRA 2025: 19–23 May 2025, ATLANTA, GALondon Humanoids Summit: 29–30 May 2025, LONDONIEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TXRSS 2025: 21–25 June 2025, LOS ANGELESETH Robotics Summer School: 21–27 June 2025, GENEVAIAS 2025: 30 June–4 July 2025, GENOA, ITALYICRES 2025: 3–4 July 2025, PORTO, PORTUGALIEEE World Haptics: 8–11 July 2025, SUWON, KOREAIFAC Symposium on Robotics: 15–18 July 2025, PARISRoboCup 2025: 15–21 July 2025, BAHIA, BRAZILRO-MAN 2025: 25–29 August 2025, EINDHOVEN, NETHERLANDS

Enjoy today’s videos!

This robot can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D-printer. It can also be printed in one go, from one material. Researchers from the University of California San Diego and BASF, describe how they developed the robot in an advanced online publication in the journal Advanced Intelligent Systems. They used the simplest technology available: a desktop 3D-printer and an off-the-shelf printing material. This design approach is not only robust, it is also cheap—each robot costs about $20 to manufacture.

And details!

[ Paper ] via [ University of California San Diego ]

Why do you want a humanoid robot to walk like a human? So that it doesn’t look weird, I guess, but it’s hard to imagine that a system that doesn’t have the same arrangement of joints and muscles that we do will move optimally by just trying to mimic us.

[ Figure ]

I don’t know how it manages it, but this little soft robotic worm somehow moves with an incredible amount of personality.

Soft actuators are critical for enabling soft robots, medical devices, and haptic systems. Many soft actuators, however, require power to hold a configuration and rely on hard circuitry for control, limiting their potential applications. In this work, the first soft electromagnetic system is demonstrated for externally-controlled bistable actuation or self-regulated astable oscillation.

[ Paper ] via [ Georgia Tech ]

Thanks, Ellen!

A 180-degree pelvis rotation would put the “break” in “breakdancing” if this were a human doing it.

[ Boston Dynamics ]

My colleagues were impressed by this cooking robot, but that may be because journalists are always impressed by free food.

[ Posha ]

This is our latest work about a hybrid aerial-terrestrial quadruped robot called SPIDAR, which shows unique and complex locomotion styles in both aerial and terrestrial domains including thrust-assisted crawling motion. This work has been presented in the International Symposium of Robotics Research (ISRR) 2024.

[ Paper ] via [ Dragon Lab ]

Thanks, Moju!

This fresh, newly captured video from Unitree’s testing grounds showcases the breakneck speed of humanoid intelligence advancement. Every day brings something thrilling!

[ Unitree ]

There should be more robots that you can ride around on.

[ AgileX Robotics ]

There should be more robots that wear hats at work.

[ Ugo ]

iRobot, who pioneered giant docks for robot vacuums, is now moving away from giant docks for robot vacuums.

[ iRobot ]

There’s a famous experiment where if you put a dead fish in current, it starts swimming, just because of its biomechanical design. Somehow, you can do the same thing with an unactuated quadruped robot on a treadmill.

[ Delft University of Technology ]

Mush! Narrowly!

[ Hybrid Robotics ]

It’s freaking me out a little bit that this couple is apparently wandering around a huge mall that is populated only by robots and zero other humans.

[ MagicLab ]

I’m trying, I really am, but the yellow is just not working for me.

[ Kepler ]

By having Stretch take on the physically demanding task of unloading trailers stacked floor to ceiling with boxes, Gap Inc has reduced injuries, lowered turnover, and watched employees get excited about automation intended to keep them safe.

[ Boston Dynamics ]

Since arriving at Mars in 2012, NASA’s Curiosity rover has been ingesting samples of Martian rock, soil, and air to better understand the past and present habitability of the Red Planet. Of particular interest to its search are organic molecules: the building blocks of life. Now, Curiosity’s onboard chemistry lab has detected long-chain hydrocarbons in a mudstone called “Cumberland,” the largest organics yet discovered on Mars.

[ NASA ]

This University of Toronto Robotics Institute Seminar is from Sergey Levine at UC Berkeley, on Robotics Foundation Models.

General-purpose pretrained models have transformed natural language processing, computer vision, and other fields. In principle, such approaches should be ideal in robotics: since gathering large amounts of data for any given robotic platform and application is likely to be difficult, general pretrained models that provide broad capabilities present an ideal recipe to enable robotic learning at scale for real-world applications.
From the perspective of general AI research, such approaches also offer a promising and intriguing approach to some of the grandest AI challenges: if large-scale training on embodied experience can provide diverse physical capabilities, this would shed light not only on the practical questions around designing broadly capable robots, but the foundations of situated problem-solving, physical understanding, and decision making. However, realizing this potential requires handling a number of challenging obstacles. What data shall we use to train robotic foundation models? What will be the training objective? How should alignment or post-training be done? In this talk, I will discuss how we can approach some of these challenges.

[ University of Toronto ]



Your weekly selection of awesome robot videos

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLANDICUAS 2025: 14–17 May 2025, CHARLOTTE, NCICRA 2025: 19–23 May 2025, ATLANTA, GALondon Humanoids Summit: 29–30 May 2025, LONDONIEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TXRSS 2025: 21–25 June 2025, LOS ANGELESETH Robotics Summer School: 21–27 June 2025, GENEVAIAS 2025: 30 June–4 July 2025, GENOA, ITALYICRES 2025: 3–4 July 2025, PORTO, PORTUGALIEEE World Haptics: 8–11 July 2025, SUWON, KOREAIFAC Symposium on Robotics: 15–18 July 2025, PARISRoboCup 2025: 15–21 July 2025, BAHIA, BRAZILRO-MAN 2025: 25–29 August 2025, EINDHOVEN, NETHERLANDS

Enjoy today’s videos!

This robot can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D-printer. It can also be printed in one go, from one material. Researchers from the University of California San Diego and BASF, describe how they developed the robot in an advanced online publication in the journal Advanced Intelligent Systems. They used the simplest technology available: a desktop 3D-printer and an off-the-shelf printing material. This design approach is not only robust, it is also cheap—each robot costs about $20 to manufacture.

And details!

[ Paper ] via [ University of California San Diego ]

Why do you want a humanoid robot to walk like a human? So that it doesn’t look weird, I guess, but it’s hard to imagine that a system that doesn’t have the same arrangement of joints and muscles that we do will move optimally by just trying to mimic us.

[ Figure ]

I don’t know how it manages it, but this little soft robotic worm somehow moves with an incredible amount of personality.

Soft actuators are critical for enabling soft robots, medical devices, and haptic systems. Many soft actuators, however, require power to hold a configuration and rely on hard circuitry for control, limiting their potential applications. In this work, the first soft electromagnetic system is demonstrated for externally-controlled bistable actuation or self-regulated astable oscillation.

[ Paper ] via [ Georgia Tech ]

Thanks, Ellen!

A 180-degree pelvis rotation would put the “break” in “breakdancing” if this were a human doing it.

[ Boston Dynamics ]

My colleagues were impressed by this cooking robot, but that may be because journalists are always impressed by free food.

[ Posha ]

This is our latest work about a hybrid aerial-terrestrial quadruped robot called SPIDAR, which shows unique and complex locomotion styles in both aerial and terrestrial domains including thrust-assisted crawling motion. This work has been presented in the International Symposium of Robotics Research (ISRR) 2024.

[ Paper ] via [ Dragon Lab ]

Thanks, Moju!

This fresh, newly captured video from Unitree’s testing grounds showcases the breakneck speed of humanoid intelligence advancement. Every day brings something thrilling!

[ Unitree ]

There should be more robots that you can ride around on.

[ AgileX Robotics ]

There should be more robots that wear hats at work.

[ Ugo ]

iRobot, who pioneered giant docks for robot vacuums, is now moving away from giant docks for robot vacuums.

[ iRobot ]

There’s a famous experiment where if you put a dead fish in current, it starts swimming, just because of its biomechanical design. Somehow, you can do the same thing with an unactuated quadruped robot on a treadmill.

[ Delft University of Technology ]

Mush! Narrowly!

[ Hybrid Robotics ]

It’s freaking me out a little bit that this couple is apparently wandering around a huge mall that is populated only by robots and zero other humans.

[ MagicLab ]

I’m trying, I really am, but the yellow is just not working for me.

[ Kepler ]

By having Stretch take on the physically demanding task of unloading trailers stacked floor to ceiling with boxes, Gap Inc has reduced injuries, lowered turnover, and watched employees get excited about automation intended to keep them safe.

[ Boston Dynamics ]

Since arriving at Mars in 2012, NASA’s Curiosity rover has been ingesting samples of Martian rock, soil, and air to better understand the past and present habitability of the Red Planet. Of particular interest to its search are organic molecules: the building blocks of life. Now, Curiosity’s onboard chemistry lab has detected long-chain hydrocarbons in a mudstone called “Cumberland,” the largest organics yet discovered on Mars.

[ NASA ]

This University of Toronto Robotics Institute Seminar is from Sergey Levine at UC Berkeley, on Robotics Foundation Models.

General-purpose pretrained models have transformed natural language processing, computer vision, and other fields. In principle, such approaches should be ideal in robotics: since gathering large amounts of data for any given robotic platform and application is likely to be difficult, general pretrained models that provide broad capabilities present an ideal recipe to enable robotic learning at scale for real-world applications.
From the perspective of general AI research, such approaches also offer a promising and intriguing approach to some of the grandest AI challenges: if large-scale training on embodied experience can provide diverse physical capabilities, this would shed light not only on the practical questions around designing broadly capable robots, but the foundations of situated problem-solving, physical understanding, and decision making. However, realizing this potential requires handling a number of challenging obstacles. What data shall we use to train robotic foundation models? What will be the training objective? How should alignment or post-training be done? In this talk, I will discuss how we can approach some of these challenges.

[ University of Toronto ]



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

European Robotics Forum: 25–27 March 2025, STUTTGART, GERMANYRoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLANDICUAS 2025: 14–17 May 2025, CHARLOTTE, NCICRA 2025: 19–23 May 2025, ATLANTA, GALondon Humanoids Summit: 29–30 May 2025, LONDONIEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TXRSS 2025: 21–25 June 2025, LOS ANGELESETH Robotics Summer School: 21–27 June 2025, GENEVAIAS 2025: 30 June–4 July 2025, GENOA, ITALYICRES 2025: 3–4 July 2025, PORTO, PORTUGALIEEE World Haptics: 8–11 July 2025, SUWON, KOREAIFAC Symposium on Robotics: 15–18 July 2025, PARISRoboCup 2025: 15–21 July 2025, BAHIA, BRAZIL

Enjoy today’s videos!

Every time you see a humanoid demo in a warehouse or factory, ask yourself: Would a “superhumanoid” like this actually be a better answer?

[ Dexterity ]

The only reason that this is the second video in Video Friday this week, and not the first, is because you’ve almost certainly already seen it.

This is a collaboration between the Robotics and AI Institute and Boston Dynamics, and RAI has its own video, which is slightly different:

- YouTube

[ Boston Dynamics ] via [ RAI ]

Well this just looks a little bit like magic.

[ University of Pennsylvania Sung Robotics Lab ]

After hours of dance battles with professional choreographers (yes, real human dancers!), PM01 now nails every iconic move from Kung Fu Hustle.

[ EngineAI ]

Sanctuary AI has demonstrated industry-leading sim-to-real transfer of learned dexterous manipulation policies for our unique, high degree-of-freedom, high strength, and high speed hydraulic hands.

[ Sanctuary AI ]

This video is “introducing BotQ, Figure’s new high-volume manufacturing facility for humanoid robots,” but I just see some injection molding and finishing of a few plastic parts.

[ Figure ]

DEEP Robotics recently showcased its “One-Touch Navigation” feature, enhancing the intelligent control experience of its robotic dog. This feature offers two modes: map-based point selection and navigation and video-based point navigation, designed for open terrains and confined spaces respectively. By simply typing on a tablet screen or selecting a point in the video feed, the robotic dog can autonomously navigate to the target point, automatically planning its path and intelligently avoiding obstacles, significantly improving traversal efficiency.

What’s in the bags, though?

[ Deep Robotics ]

This hurts my knees to watch, in a few different ways.

[ Unitree ]

Why the recent obsession with two legs when instead robots could have six? So much cuter!

[ Jizai ] via [ RobotStart ]

The world must know: who killed Mini-Duck?

[ Pollen ]

Seven hours of Digit robots at work at ProMat.

And there are two more days of these livestreams if you need more!

[ Agility ]



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

European Robotics Forum: 25–27 March 2025, STUTTGART, GERMANYRoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLANDICUAS 2025: 14–17 May 2025, CHARLOTTE, NCICRA 2025: 19–23 May 2025, ATLANTA, GALondon Humanoids Summit: 29–30 May 2025, LONDONIEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TXRSS 2025: 21–25 June 2025, LOS ANGELESETH Robotics Summer School: 21–27 June 2025, GENEVAIAS 2025: 30 June–4 July 2025, GENOA, ITALYICRES 2025: 3–4 July 2025, PORTO, PORTUGALIEEE World Haptics: 8–11 July 2025, SUWON, KOREAIFAC Symposium on Robotics: 15–18 July 2025, PARISRoboCup 2025: 15–21 July 2025, BAHIA, BRAZIL

Enjoy today’s videos!

Every time you see a humanoid demo in a warehouse or factory, ask yourself: Would a “superhumanoid” like this actually be a better answer?

[ Dexterity ]

The only reason that this is the second video in Video Friday this week, and not the first, is because you’ve almost certainly already seen it.

This is a collaboration between the Robotics and AI Institute and Boston Dynamics, and RAI has its own video, which is slightly different:

- YouTube

[ Boston Dynamics ] via [ RAI ]

Well this just looks a little bit like magic.

[ University of Pennsylvania Sung Robotics Lab ]

After hours of dance battles with professional choreographers (yes, real human dancers!), PM01 now nails every iconic move from Kung Fu Hustle.

[ EngineAI ]

Sanctuary AI has demonstrated industry-leading sim-to-real transfer of learned dexterous manipulation policies for our unique, high degree-of-freedom, high strength, and high speed hydraulic hands.

[ Sanctuary AI ]

This video is “introducing BotQ, Figure’s new high-volume manufacturing facility for humanoid robots,” but I just see some injection molding and finishing of a few plastic parts.

[ Figure ]

DEEP Robotics recently showcased its “One-Touch Navigation” feature, enhancing the intelligent control experience of its robotic dog. This feature offers two modes: map-based point selection and navigation and video-based point navigation, designed for open terrains and confined spaces respectively. By simply typing on a tablet screen or selecting a point in the video feed, the robotic dog can autonomously navigate to the target point, automatically planning its path and intelligently avoiding obstacles, significantly improving traversal efficiency.

What’s in the bags, though?

[ Deep Robotics ]

This hurts my knees to watch, in a few different ways.

[ Unitree ]

Why the recent obsession with two legs when instead robots could have six? So much cuter!

[ Jizai ] via [ RobotStart ]

The world must know: who killed Mini-Duck?

[ Pollen ]

Seven hours of Digit robots at work at ProMat.

And there are two more days of these livestreams if you need more!

[ Agility ]



When you see a squirrel jump to a branch, you might think (and I myself thought, up until just now) that they’re doing what birds and primates would do to stick the landing: just grabbing the branch and hanging on. But it turns out that squirrels, being squirrels, don’t actually have prehensile hands or feet, meaning that they can’t grasp things with any significant amount of strength. Instead, they manage to land on branches using a “palmar” grasp, which isn’t really a grasp at all, in the sense that there’s not much grabbing going on. It’s more accurate to say that the squirrel is mostly landing on its palms and then balancing, which is very impressive.

This kind of dynamic stability is a trait that squirrels share with one of our favorite robots: Salto. Salto is a jumper too, and it’s about as non-prehensile as it’s possible to get, having just one limb with basically no grip strength at all. The robot is great at bouncing around on the ground, but if it could move vertically, that’s an entire new mobility dimension that could lead to some potentially interesting applications, including environmental scouting, search and rescue, and disaster relief.

In a paper published today in Science Robotics, roboticists have now taught Salto to leap from one branch to another like squirrels do, using a low torque gripper and relying on its balancing skills instead.

Squirrel Landing Techniques in Robotics

While we’re going to be mostly talking about robots here (because that’s what we do), there’s an entire paper by many of the same robotics researchers that was published in late February in the Journal of Experimental Biology about how squirrels land on branches this way. While you’d think that the researchers might have found some domesticated squirrels for this, they actually spent about a month bribing wild squirrels on the UC Berkeley campus to bounce around some instrumented perches while high speed cameras were rolling.

Squirrels aim for perfectly balanced landings, which allow them to immediately jump again. They don’t always get it quite right, of course, and they’re excellent at recovering from branch landings where they go a little bit over or under where they want to be. The research showed how squirrels use their musculoskeletal system to adjust their body position, dynamically absorbing the impact of landing with their forelimbs and altering their mass distribution to turn near misses into successful perches.

It’s these kinds of skills that Salto really needs to be able to usefully make jumps in the real world. When everything goes exactly the way it’s supposed to, jumping and perching is easy, but that almost never happens and the squirrel research shows how important it is to be able to adapt when things go wonky. It’s not like the little robot has a lot of degrees of freedom to work with—it’s got just one leg, just one foot, a couple of thrusters, and that spinning component which, believe it or not, functions as a tail. And yet, Salto manages to (sometimes!) make it work.

Those balanced upright landings are super impressive, although we should mention that Salto only achieved that level of success with two out of 30 trials. It only actually fell off the perch five times, and the rest of the time, it did manage a landing but then didn’t quite balance and either overshot or undershot the branch. There are some mechanical reasons why this is particularly difficult for Salto—for example, having just one leg to use for both jumping and landing means that the robot’s leg has to be rotated mid-jump. This takes time, and causes Salto to jump more vertically than squirrels do, since squirrels jump with their back legs and land with their front legs.

Based on these tests, the researchers identified four key features for balanced landings that apply to robots (and squirrels):

  1. Power and accuracy are important!
  2. It’s easier to land a shallower jump with a more horizontal trajectory.
  3. Being able to squish down close to the branch helps with balancing.
  4. Responsive actuation is also important!

Of these, Salto is great at the first one, very much not great at the second one, and also not great at the third and fourth ones. So in some sense, it’s amazing that the roboticists have been able to get it to do this branch-to-branch jumping as well as they have. There’s plenty more to do, though. Squirrels aren’t the only arboreal jumpers out there, and there’s likely more to learn from other animals—Salto was originally inspired by the galago (also known as bush babies), although those are more difficult to find on the UC Berkeley campus. And while the researchers don’t mention it, the obvious extension to this work is to chain together multiple jumps, and eventually to combine branch jumping with the ground jumping and wall jumping that Salto can do already to really give those squirrels a jump for their nuts.



When you see a squirrel jump to a branch, you might think (and I myself thought, up until just now) that they’re doing what birds and primates would do to stick the landing: just grabbing the branch and hanging on. But it turns out that squirrels, being squirrels, don’t actually have prehensile hands or feet, meaning that they can’t grasp things with any significant amount of strength. Instead, they manage to land on branches using a “palmar” grasp, which isn’t really a grasp at all, in the sense that there’s not much grabbing going on. It’s more accurate to say that the squirrel is mostly landing on its palms and then balancing, which is very impressive.

This kind of dynamic stability is a trait that squirrels share with one of our favorite robots: Salto. Salto is a jumper too, and it’s about as non-prehensile as it’s possible to get, having just one limb with basically no grip strength at all. The robot is great at bouncing around on the ground, but if it could move vertically, that’s an entire new mobility dimension that could lead to some potentially interesting applications, including environmental scouting, search and rescue, and disaster relief.

In a paper published today in Science Robotics, roboticists have now taught Salto to leap from one branch to another like squirrels do, using a low torque gripper and relying on its balancing skills instead.

Squirrel Landing Techniques in Robotics

While we’re going to be mostly talking about robots here (because that’s what we do), there’s an entire paper by many of the same robotics researchers that was published in late February in the Journal of Experimental Biology about how squirrels land on branches this way. While you’d think that the researchers might have found some domesticated squirrels for this, they actually spent about a month bribing wild squirrels on the UC Berkeley campus to bounce around some instrumented perches while high speed cameras were rolling.

Squirrels aim for perfectly balanced landings, which allow them to immediately jump again. They don’t always get it quite right, of course, and they’re excellent at recovering from branch landings where they go a little bit over or under where they want to be. The research showed how squirrels use their musculoskeletal system to adjust their body position, dynamically absorbing the impact of landing with their forelimbs and altering their mass distribution to turn near misses into successful perches.

It’s these kinds of skills that Salto really needs to be able to usefully make jumps in the real world. When everything goes exactly the way it’s supposed to, jumping and perching is easy, but that almost never happens and the squirrel research shows how important it is to be able to adapt when things go wonky. It’s not like the little robot has a lot of degrees of freedom to work with—it’s got just one leg, just one foot, a couple of thrusters, and that spinning component which, believe it or not, functions as a tail. And yet, Salto manages to (sometimes!) make it work.

Those balanced upright landings are super impressive, although we should mention that Salto only achieved that level of success with two out of 30 trials. It only actually fell off the perch five times, and the rest of the time, it did manage a landing but then didn’t quite balance and either overshot or undershot the branch. There are some mechanical reasons why this is particularly difficult for Salto—for example, having just one leg to use for both jumping and landing means that the robot’s leg has to be rotated mid-jump. This takes time, and causes Salto to jump more vertically than squirrels do, since squirrels jump with their back legs and land with their front legs.

Based on these tests, the researchers identified four key features for balanced landings that apply to robots (and squirrels):

  1. Power and accuracy are important!
  2. It’s easier to land a shallower jump with a more horizontal trajectory.
  3. Being able to squish down close to the branch helps with balancing.
  4. Responsive actuation is also important!

Of these, Salto is great at the first one, very much not great at the second one, and also not great at the third and fourth ones. So in some sense, it’s amazing that the roboticists have been able to get it to do this branch-to-branch jumping as well as they have. There’s plenty more to do, though. Squirrels aren’t the only arboreal jumpers out there, and there’s likely more to learn from other animals—Salto was originally inspired by the galago (also known as bush babies), although those are more difficult to find on the UC Berkeley campus. And while the researchers don’t mention it, the obvious extension to this work is to chain together multiple jumps, and eventually to combine branch jumping with the ground jumping and wall jumping that Salto can do already to really give those squirrels a jump for their nuts.



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

European Robotics Forum: 25–27 March 2025, STUTTGART, GERMANYRoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLANDICUAS 2025: 14–17 May 2025, CHARLOTTE, NCICRA 2025: 19–23 May 2025, ATLANTA, GALondon Humanoids Summit: 29–30 May 2025, LONDONIEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TXRSS 2025: 21–25 June 2025, LOS ANGELESETH Robotics Summer School: 21–27 June 2025, GENEVAIAS 2025: 30 June–4 July 2025, GENOA, ITALYICRES 2025: 3–4 July 2025, PORTO, PORTUGALIEEE World Haptics: 8–11 July 2025, SUWON, KOREAIFAC Symposium on Robotics: 15–18 July 2025, PARISRoboCup 2025: 15–21 July 2025, BAHIA, BRAZIL

Enjoy today’s videos!

In 2026, a JAXA spacecraft is heading to the Martian moon Phobos to chuck a little rover at it.

[ DLR ]

Happy International Women’s Day! UBTECH humanoid robots Walker S1 deliver flowers to incredible women and wish all women a day filled with love, joy and empowerment.

[ UBTECH ]

TRON 1 demonstrates Multi-Terrain Mobility as a versatile biped mobility platform, empowering innovators to push the boundaries of robotic locomotion, unlocking limitless possibilities in algorithm validation and advanced application development.

[ LimX Dynamics ]

This is indeed a very fluid running gait, and the flip is also impressive, but I’m wondering what sort of actual value these skills add, you know? Or even what kind of potential value they’re leading up to.

[ EngineAI ]

Designing trajectories for manipulation through contact is challenging as it requires reasoning of object & robot trajectories as well as complex contact sequences simultaneously. In this paper, we present a novel framework for simultaneously designing trajectories of robots, objects, and contacts efficiently for contact-rich manipulation.

[ Paper ] via [ Mitsubishi Electric Research Laboratories ]

Thanks, Yuki!

Running robot, you say? I’m thinking it might actually be a power walking robot.

[ MagicLab ]

Wake up, Reachy!

[ Pollen ]

Robot vacuum docks have gotten large enough that we’re now all supposed to pretend that we’re happy they’ve become pieces of furniture.

[ Roborock ]

The SeaPerch underwater robot, a “do-it-yourself” maker project, is a popular educational tool for middle and high school students. Developed by MIT Sea Grant, the remotely operated vehicle (ROV) teaches hand fabrication processes, electronics techniques, and STEM concepts, while encouraging exploration of structures, electronics, and underwater dynamics.

[ MIT Sea Grant ]

I was at this RoboGames match! In 2010! And now I feel old!

[ Hardcore Robotics ]

Daniel Simu with a detailed breakdown of his circus acrobat partner robot. If you don’t want to watch the whole thing, make sure and check out 3:30.

[ Daniel Simu ]



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

European Robotics Forum: 25–27 March 2025, STUTTGART, GERMANYRoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLANDICUAS 2025: 14–17 May 2025, CHARLOTTE, NCICRA 2025: 19–23 May 2025, ATLANTA, GALondon Humanoids Summit: 29–30 May 2025, LONDONIEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TXRSS 2025: 21–25 June 2025, LOS ANGELESETH Robotics Summer School: 21–27 June 2025, GENEVAIAS 2025: 30 June–4 July 2025, GENOA, ITALYICRES 2025: 3–4 July 2025, PORTO, PORTUGALIEEE World Haptics: 8–11 July 2025, SUWON, KOREAIFAC Symposium on Robotics: 15–18 July 2025, PARISRoboCup 2025: 15–21 July 2025, BAHIA, BRAZIL

Enjoy today’s videos!

In 2026, a JAXA spacecraft is heading to the Martian moon Phobos to chuck a little rover at it.

[ DLR ]

Happy International Women’s Day! UBTECH humanoid robots Walker S1 deliver flowers to incredible women and wish all women a day filled with love, joy and empowerment.

[ UBTECH ]

TRON 1 demonstrates Multi-Terrain Mobility as a versatile biped mobility platform, empowering innovators to push the boundaries of robotic locomotion, unlocking limitless possibilities in algorithm validation and advanced application development.

[ LimX Dynamics ]

This is indeed a very fluid running gait, and the flip is also impressive, but I’m wondering what sort of actual value these skills add, you know? Or even what kind of potential value they’re leading up to.

[ EngineAI ]

Designing trajectories for manipulation through contact is challenging as it requires reasoning of object & robot trajectories as well as complex contact sequences simultaneously. In this paper, we present a novel framework for simultaneously designing trajectories of robots, objects, and contacts efficiently for contact-rich manipulation.

[ Paper ] via [ Mitsubishi Electric Research Laboratories ]

Thanks, Yuki!

Running robot, you say? I’m thinking it might actually be a power walking robot.

[ MagicLab ]

Wake up, Reachy!

[ Pollen ]

Robot vacuum docks have gotten large enough that we’re now all supposed to pretend that we’re happy they’ve become pieces of furniture.

[ Roborock ]

The SeaPerch underwater robot, a “do-it-yourself” maker project, is a popular educational tool for middle and high school students. Developed by MIT Sea Grant, the remotely operated vehicle (ROV) teaches hand fabrication processes, electronics techniques, and STEM concepts, while encouraging exploration of structures, electronics, and underwater dynamics.

[ MIT Sea Grant ]

I was at this RoboGames match! In 2010! And now I feel old!

[ Hardcore Robotics ]

Daniel Simu with a detailed breakdown of his circus acrobat partner robot. If you don’t want to watch the whole thing, make sure and check out 3:30.

[ Daniel Simu ]



Ukraine’s young tech entrepreneurs think that a combination of robots and lessons from war-gaming could turn the tide in the war against Russia. They are developing an intelligent operating system to enable a single controller to remotely operate swarms of interconnected drones and cannon-equipped land robots. The tech, they say, could help Ukraine cope with Russia’s numerical advantage.

Kyiv-based start-up Ark Robotics is conducting trials on an embryo of such a system in cooperation with one of the brigades of Ukraine’s ground forces. The company emerged about a year ago, when a group of young roboticists heard a speech by one of the Ukrainian commanders detailing challenges on the frontline.

“At that time, we were building unmanned ground vehicles [UGVs],” Andryi Udovychenko, Ark Robotics’s operations lead, told IEEE Spectrum on the sidelines of the Brave 1 Defense Tech Innovations Forum held in Kyiv last month. “But we heard that what we had [to offer] wasn’t enough. They said they needed something more.”

Since the war began, a vibrant defense tech innovation ecosystem has emerged in Ukraine, having started from modest beginnings of modifying China-made DJI MAVIC drones to make up for the lack of artillery. Today, Ukraine is a drone-making powerhouse. Dozens of startup companies are churning out newer and better tech and rapidly refining it to improve the effectiveness of the beleaguered nation’s troops. First-person-view drones have become a symbol of this war, but since last year they have begun to be complemented by UGVs, which help on the ground with logistics, evacuation of the wounded and also act as a new means of attack.

The new approach allows the Ukrainians to keep their soldiers away from the battle ground for longer periods but doesn’t erase the fact that Ukraine has far fewer soldiers than Russia does.

“Every single drone needs one operator, complicated drones need two or three operators, and we don’t have that many people,” Serhii Kupriienko, the CEO and founder of Swarmer, said during a panel at the Kyiv event. Swarmer is a Kyiv-based start-up developing technologies to allow groups of drones to operate as one self-coordinated swarm.

Ark Robotics are trying to take that idea yet another step. The company’s Frontier OS aspires to become a unifying interface that would allow drones and UGVs made by various makers to work together under the control of operators seated in control rooms miles away from the action.

One Controller for Many Drones and Robots

“We have many types of drones that are using different controls, different interfaces and it’s really hard to build cohesion,” Udovychenko says. “To move forward, we need a system where we can control multiple different types of vehicles in a cohesive manner in complex operations.”

Udovychenko, a gaming enthusiast, is excited about the progress Ark Robotics has made. It could be a game-changer, he says, a new foundational technology for defense. It would make Ukraine “like Protoss,” the fictional technologically advanced nation in the military science fiction strategy game StarCraft.

But what powers him is much more than youthful geekiness. Building up Ukraine’s technological dominance is a mission fueled by grief and outrage.

“I don’t want to lose any more friends,” he remarks at one point, becoming visibly emotional. “We don’t want to be dying in the trenches, but we need to be able to defend our country and given that the societal math doesn’t favor us, we need to make our own math to win.”

Soldiers at an undisclosed location used laptops to test software from Ark Robotics.Ark Robotics

The scope of the challenge isn’t lost on him. The company has so far built a vehicle computing unit that serves as a central hub and control board for various unmanned vehicles including flying drones, UGVs and even marine vehicles.

“We are building this as a solution that enables the integration of various team developers and software, allowing us to extract the best components and rapidly scale them,” Udovychenko says. “This system pairs a high-performance computing module with an interface board that provides multiple connections for vehicle systems.

The platform allows a single operator to remotely guide a flock of robots but will in the future also incorporate autonomous navigation and task execution, according to Udovychenko. So far, the team has tested the technology in simple logistics exercises. For the grand vision to work, though, the biggest challenge will be maintaining reliable communication links between the controller and the robotic fleet, but also between the robots and drones.

Tests on Ukraine Battlefields to Begin Soon

“We’re not talking about communications in a relatively safe environment when you have an LTE network that has enough bandwidth to accommodate thousands of phones,” Udovychenko notes. “At the frontline, everything is affected by electronic warfare, so you need to be able to switch between different solutions including satellite, digital radio and radio mesh so that even if you lose connection to the server, you still have connection between the drones and robots so that they can move together and maintain some level of control between them.”

Udovychenko expects Ark Robotics’s partner brigade in the Ukraine armed forces to test the early version of the tech in a real-life situation within the next couple of months. His young drone operator friends are excited, he says. And how could they not be? The technology promises to turn warfighting into a kind of real-life video game. The new class of multi-drone operators will likely be recruited from the ranks of gaming aficionados.

“If we can take the best pilots and give them tools to combine the operations, we might see a tremendous advantage,” Udovychenko says. “It’s like in StarCraft. Some people are simply able to play the game right and obliterate their opponents within minutes even if they’re starting from the same basic conditions.”

Speaking at the Brave 1 Defense Tech Innovations Forum, Colonel Andrii Lebedenko, Deputy Commander-in-Chief of the Armed Forces of Ukraine, acknowledged that land battles have so far been Ukraine’s weakest area. He said that replacing “humans with robots as much as possible” is Ukraine’s near-term goal and he expressed confidence that upcoming technologies will give greater autonomy to the robot swarms.

Some roboticists, however, are more skeptical that swarms of autonomous robots will crawl en-masse across the battlefields of Eastern Ukraine any time soon. “Swarming is certainly a goal we should reach but it’s much easier with FPV drones than with ground-based robots,” Ivan Movchan, CEO of the Ukrainian Scale Company, a Kharkiv-based robot maker, told Spectrum.

“Navigation on the ground is more challenging simply because of the obstacles,” he adds. “But I do expect UGVs to become very common in Ukraine over the next year.”



Ukraine’s young tech entrepreneurs think that a combination of robots and lessons from war-gaming could turn the tide in the war against Russia. They are developing an intelligent operating system to enable a single controller to remotely operate swarms of interconnected drones and cannon-equipped land robots. The tech, they say, could help Ukraine cope with Russia’s numerical advantage.

Kyiv-based start-up Ark Robotics is conducting trials on an embryo of such a system in cooperation with one of the brigades of Ukraine’s ground forces. The company emerged about a year ago, when a group of young roboticists heard a speech by one of the Ukrainian commanders detailing challenges on the frontline.

“At that time, we were building unmanned ground vehicles [UGVs],” Andryi Udovychenko, Ark Robotics’s operations lead, told IEEE Spectrum on the sidelines of the Brave 1 Defense Tech Innovations Forum held in Kyiv last month. “But we heard that what we had [to offer] wasn’t enough. They said they needed something more.”

Since the war began, a vibrant defense tech innovation ecosystem has emerged in Ukraine, having started from modest beginnings of modifying China-made DJI MAVIC drones to make up for the lack of artillery. Today, Ukraine is a drone-making powerhouse. Dozens of startup companies are churning out newer and better tech and rapidly refining it to improve the effectiveness of the beleaguered nation’s troops. First-person-view drones have become a symbol of this war, but since last year they have begun to be complemented by UGVs, which help on the ground with logistics, evacuation of the wounded and also act as a new means of attack.

The new approach allows the Ukrainians to keep their soldiers away from the battle ground for longer periods but doesn’t erase the fact that Ukraine has far fewer soldiers than Russia does.

“Every single drone needs one operator, complicated drones need two or three operators, and we don’t have that many people,” Serhii Kupriienko, the CEO and founder of Swarmer, said during a panel at the Kyiv event. Swarmer is a Kyiv-based start-up developing technologies to allow groups of drones to operate as one self-coordinated swarm.

Ark Robotics are trying to take that idea yet another step. The company’s Frontier OS aspires to become a unifying interface that would allow drones and UGVs made by various makers to work together under the control of operators seated in control rooms miles away from the action.

One Controller for Many Drones and Robots

“We have many types of drones that are using different controls, different interfaces and it’s really hard to build cohesion,” Udovychenko says. “To move forward, we need a system where we can control multiple different types of vehicles in a cohesive manner in complex operations.”

Udovychenko, a gaming enthusiast, is excited about the progress Ark Robotics has made. It could be a game-changer, he says, a new foundational technology for defense. It would make Ukraine “like Protoss,” the fictional technologically advanced nation in the military science fiction strategy game StarCraft.

But what powers him is much more than youthful geekiness. Building up Ukraine’s technological dominance is a mission fueled by grief and outrage.

“I don’t want to lose any more friends,” he remarks at one point, becoming visibly emotional. “We don’t want to be dying in the trenches, but we need to be able to defend our country and given that the societal math doesn’t favor us, we need to make our own math to win.”

Soldiers at an undisclosed location used laptops to test software from Ark Robotics.Ark Robotics

The scope of the challenge isn’t lost on him. The company has so far built a vehicle computing unit that serves as a central hub and control board for various unmanned vehicles including flying drones, UGVs and even marine vehicles.

“We are building this as a solution that enables the integration of various team developers and software, allowing us to extract the best components and rapidly scale them,” Udovychenko says. “This system pairs a high-performance computing module with an interface board that provides multiple connections for vehicle systems.

The platform allows a single operator to remotely guide a flock of robots but will in the future also incorporate autonomous navigation and task execution, according to Udovychenko. So far, the team has tested the technology in simple logistics exercises. For the grand vision to work, though, the biggest challenge will be maintaining reliable communication links between the controller and the robotic fleet, but also between the robots and drones.

Tests on Ukraine Battlefields to Begin Soon

“We’re not talking about communications in a relatively safe environment when you have an LTE network that has enough bandwidth to accommodate thousands of phones,” Udovychenko notes. “At the frontline, everything is affected by electronic warfare, so you need to be able to switch between different solutions including satellite, digital radio and radio mesh so that even if you lose connection to the server, you still have connection between the drones and robots so that they can move together and maintain some level of control between them.”

Udovychenko expects Ark Robotics’s partner brigade in the Ukraine armed forces to test the early version of the tech in a real-life situation within the next couple of months. His young drone operator friends are excited, he says. And how could they not be? The technology promises to turn warfighting into a kind of real-life video game. The new class of multi-drone operators will likely be recruited from the ranks of gaming aficionados.

“If we can take the best pilots and give them tools to combine the operations, we might see a tremendous advantage,” Udovychenko says. “It’s like in StarCraft. Some people are simply able to play the game right and obliterate their opponents within minutes even if they’re starting from the same basic conditions.”

Speaking at the Brave 1 Defense Tech Innovations Forum, Colonel Andrii Lebedenko, Deputy Commander-in-Chief of the Armed Forces of Ukraine, acknowledged that land battles have so far been Ukraine’s weakest area. He said that replacing “humans with robots as much as possible” is Ukraine’s near-term goal and he expressed confidence that upcoming technologies will give greater autonomy to the robot swarms.

Some roboticists, however, are more skeptical that swarms of autonomous robots will crawl en-masse across the battlefields of Eastern Ukraine any time soon. “Swarming is certainly a goal we should reach but it’s much easier with FPV drones than with ground-based robots,” Ivan Movchan, CEO of the Ukrainian Scale Company, a Kharkiv-based robot maker, told Spectrum.

“Navigation on the ground is more challenging simply because of the obstacles,” he adds. “But I do expect UGVs to become very common in Ukraine over the next year.”



Generative AI models are getting closer to taking action in the real world. Already, the big AI companies are introducing AI agents that can take care of web-based busywork for you, ordering your groceries or making your dinner reservation. Today, Google DeepMind announced two generative AI models designed to power tomorrow’s robots.

The models are both built on Google Gemini, a multimodal foundation model that can process text, voice, and image data to answer questions, give advice, and generally help out. DeepMind calls the first of the new models, Gemini Robotics, an “advanced vision-language-action model,” meaning that it can take all those same inputs and then output instructions for a robot’s physical actions. The models are designed to work with any hardware system, but were mostly tested on the two-armed Aloha 2 system that DeepMind introduced last year.

In a demonstration video, a voice says: “Pick up the basketball and slam dunk it” (at 2:27 in the video below). Then a robot arm carefully picks up a miniature basketball and drops it into a miniature net—and while it wasn’t a NBA-level dunk, it was enough to get the DeepMind researchers excited.

Google DeepMind released this demo video showing off the capabilities of its Gemini Robotics foundation model to control robots. Gemini Robotics

“This basketball example is one of my favorites,” said Kanishka Rao, the principal software engineer for the project, in a press briefing. He explains that the robot had “never, ever seen anything related to basketball,” but that its underlying foundation model had a general understanding of the game, knew what a basketball net looks like, and understood what the term “slam dunk” meant. The robot was therefore “able to connect those [concepts] to actually accomplish the task in the physical world,” says Rao.

What are the advances of Gemini Robotics?

Carolina Parada, head of robotics at Google DeepMind, said in the briefing that the new models improve over the company’s prior robots in three dimensions: generalization, adaptability, and dexterity. All of these advances are necessary, she said, to create “a new generation of helpful robots.”

Generalization means that a robot can apply a concept that it has learned in one context to another situation, and the researchers looked at visual generalization (for example, does it get confused if the color of an object or background changed), instruction generalization (can it interpret commands that are worded in different ways), and action generalization (can it perform an action it had never done before).

Parada also says that robots powered by Gemini can better adapt to changing instructions and circumstances. To demonstrate that point in a video, a researcher told a robot arm to put a bunch of plastic grapes into a clear Tupperware container, then proceeded to shift three containers around on the table in an approximation of a shyster’s shell game. The robot arm dutifully followed the clear container around until it could fulfill its directive.

Google DeepMind says Gemini Robotics is better than previous models at adapting to changing instructions and circumstances. Google DeepMind

As for dexterity, demo videos showed the robotic arms folding a piece of paper into an origami fox and performing other delicate tasks. However, it’s important to note that the impressive performance here is in the context of a narrow set of high-quality data that the robot was trained on for these specific tasks, so the level of dexterity that these tasks represent is not being generalized.

What is embodied reasoning?

The second model introduced today is Gemini Robotics-ER, with the ER standing for “embodied reasoning,” which is the sort of intuitive physical world understanding that humans develop with experience over time. We’re able to do clever things like look at an object we’ve never seen before and make an educated guess about the best way to interact with it, and this is what DeepMind seeks to emulate with Gemini Robotics-ER.

Parada gave an example of Gemini Robotics-ER’s ability to identify an appropriate grasping point for picking up a coffee cup. The model correctly identifies the handle, because that’s where humans tend to grasp coffee mugs. However, this illustrates a potential weakness of relying on human-centric training data: for a robot, especially a robot that might be able to comfortably handle a mug of hot coffee, a thin handle might be a much less reliable grasping point than a more enveloping grasp of the mug itself.

DeepMind’s Approach to Robotic Safety

Vikas Sindhwani, DeepMind’s head of robotic safety for the project, says the team took a layered approach to safety. It starts with classic physical safety controls that manage things like collision avoidance and stability, but also includes “semantic safety” systems that evaluate both its instructions and the consequences of following them. These systems are most sophisticated in the Gemini Robotics-ER model, says Sindhwani, which is “trained to evaluate whether or not a potential action is safe to perform in a given scenario.”

And because “safety is not a competitive endeavor,” Sindhwani says, DeepMind is releasing a new data set and what it calls the Asimov benchmark, which is intended to measure a model’s ability to understand common-sense rules of life. The benchmark contains both questions about visual scenes and text scenarios, asking models’ opinions on things like the desirability of mixing bleach and vinegar (a combination that make chlorine gas) and putting a soft toy on a hot stove. In the press briefing, Sindhwani said that the Gemini models had “strong performance” on that benchmark, and the technical report showed that the models got more than 80 percent of questions correct.

DeepMind’s Robotic Partnerships

Back in December, DeepMind and the humanoid robotics company Apptronik announced a partnership, and Parada says that the two companies are working together “to build the next generation of humanoid robots with Gemini at its core.” DeepMind is also making its models available to an elite group of “trusted testers”: Agile Robots, Agility Robotics, Boston Dynamics, and Enchanted Tools.



Generative AI models are getting closer to taking action in the real world. Already, the big AI companies are introducing AI agents that can take care of web-based busywork for you, ordering your groceries or making your dinner reservation. Today, Google DeepMind announced two generative AI models designed to power tomorrow’s robots.

The models are both built on Google Gemini, a multimodal foundation model that can process text, voice, and image data to answer questions, give advice, and generally help out. DeepMind calls the first of the new models, Gemini Robotics, an “advanced vision-language-action model,” meaning that it can take all those same inputs and then output instructions for a robot’s physical actions. The models are designed to work with any hardware system, but were mostly tested on the two-armed Aloha 2 system that DeepMind introduced last year.

In a demonstration video, a voice says: “Pick up the basketball and slam dunk it” (at 2:27 in the video below). Then a robot arm carefully picks up a miniature basketball and drops it into a miniature net—and while it wasn’t a NBA-level dunk, it was enough to get the DeepMind researchers excited.

Google DeepMind released this demo video showing off the capabilities of its Gemini Robotics foundation model to control robots. Gemini Robotics

“This basketball example is one of my favorites,” said Kanishka Rao, the principal software engineer for the project, in a press briefing. He explains that the robot had “never, ever seen anything related to basketball,” but that its underlying foundation model had a general understanding of the game, knew what a basketball net looks like, and understood what the term “slam dunk” meant. The robot was therefore “able to connect those [concepts] to actually accomplish the task in the physical world,” says Rao.

What are the advances of Gemini Robotics?

Carolina Parada, head of robotics at Google DeepMind, said in the briefing that the new models improve over the company’s prior robots in three dimensions: generalization, adaptability, and dexterity. All of these advances are necessary, she said, to create “a new generation of helpful robots.”

Generalization means that a robot can apply a concept that it has learned in one context to another situation, and the researchers looked at visual generalization (for example, does it get confused if the color of an object or background changed), instruction generalization (can it interpret commands that are worded in different ways), and action generalization (can it perform an action it had never done before).

Parada also says that robots powered by Gemini can better adapt to changing instructions and circumstances. To demonstrate that point in a video, a researcher told a robot arm to put a bunch of plastic grapes into a clear Tupperware container, then proceeded to shift three containers around on the table in an approximation of a shyster’s shell game. The robot arm dutifully followed the clear container around until it could fulfill its directive.

Google DeepMind says Gemini Robotics is better than previous models at adapting to changing instructions and circumstances. Google DeepMind

As for dexterity, demo videos showed the robotic arms folding a piece of paper into an origami fox and performing other delicate tasks. However, it’s important to note that the impressive performance here is in the context of a narrow set of high-quality data that the robot was trained on for these specific tasks, so the level of dexterity that these tasks represent is not being generalized.

What is embodied reasoning?

The second model introduced today is Gemini Robotics-ER, with the ER standing for “embodied reasoning,” which is the sort of intuitive physical world understanding that humans develop with experience over time. We’re able to do clever things like look at an object we’ve never seen before and make an educated guess about the best way to interact with it, and this is what DeepMind seeks to emulate with Gemini Robotics-ER.

Parada gave an example of Gemini Robotics-ER’s ability to identify an appropriate grasping point for picking up a coffee cup. The model correctly identifies the handle, because that’s where humans tend to grasp coffee mugs. However, this illustrates a potential weakness of relying on human-centric training data: for a robot, especially a robot that might be able to comfortably handle a mug of hot coffee, a thin handle might be a much less reliable grasping point than a more enveloping grasp of the mug itself.

DeepMind’s Approach to Robotic Safety

Vikas Sindhwani, DeepMind’s head of robotic safety for the project, says the team took a layered approach to safety. It starts with classic physical safety controls that manage things like collision avoidance and stability, but also includes “semantic safety” systems that evaluate both its instructions and the consequences of following them. These systems are most sophisticated in the Gemini Robotics-ER model, says Sindhwani, which is “trained to evaluate whether or not a potential action is safe to perform in a given scenario.”

And because “safety is not a competitive endeavor,” Sindhwani says, DeepMind is releasing a new data set and what it calls the Asimov benchmark, which is intended to measure a model’s ability to understand common-sense rules of life. The benchmark contains both questions about visual scenes and text scenarios, asking models’ opinions on things like the desirability of mixing bleach and vinegar (a combination that make chlorine gas) and putting a soft toy on a hot stove. In the press briefing, Sindhwani said that the Gemini models had “strong performance” on that benchmark, and the technical report showed that the models got more than 80 percent of questions correct.

DeepMind’s Robotic Partnerships

Back in December, DeepMind and the humanoid robotics company Apptronik announced a partnership, and Parada says that the two companies are working together “to build the next generation of humanoid robots with Gemini at its core.” DeepMind is also making its models available to an elite group of “trusted testers”: Agile Robots, Agility Robotics, Boston Dynamics, and Enchanted Tools.



After January’s Southern California wildfires, the question of burying energy infrastructure to prevent future fires has gained renewed urgency in the state. While the exact cause of the fires remains under investigation, California utilities have spent years undergrounding power lines to mitigate fire risks. Pacific Gas & Electric, which has installed over 1,287 kilometers of underground power lines since 2021, estimates the method is 98 percent effective in reducing ignition threats. Southern California Edison has buried over 40 percent of its high-risk distribution lines, and 63 percent of San Diego Gas & Electric’s regional distribution system is now underground.

Still, the exorbitant cost of underground construction leaves much of the U.S. power grid’s 8.8 million kilometers of distribution lines and 180 million utility poles exposed to tree strikes, flying debris, and other opportunities for sparks to cascade into a multi-acre blaze. Recognizing the need for cost-effective undergrounding solutions, the U.S. Department of Energy launched GOPHURRS in January 2024. The three-year program pours $34 million into 12 projects to develop more efficient undergrounding technologies that minimize surface disruptions while supporting medium-voltage power lines.

One recipient, Case Western Reserve University in Cleveland, Ohio, is building a self-propelled robotic sleeve that mimics earthworms’ characteristic peristaltic movement to advance through soil. Awarded $2 million, Case’s “peristaltic conduit” concept hopes to more precisely navigate underground and reduce the risk of unintended damage, such as breaking an existing pipe.

Why Is Undergrounding So Expensive?

Despite its benefits, undergrounding remains cost-prohibitive at US $1.1 to $3.7 million per kilometer ($1.8 to $6 million per mile) for distribution lines and $3.7 to $62 million per kilometer for transmission lines, according to estimates from California’s three largest utilities. That’s significantly more than overhead infrastructure, which costs $394,000 to $472,000 per kilometer for distribution lines and $621,000 to $6.83 million per kilometer for transmission lines.

The most popular method of undergrounding power lines, called open trenching, requires extensive excavation, conduit installation, and backfilling, making it expensive and logistically complicated. And it’s often impractical in dense urban areas where underground infrastructure is already congested with plumbing, fiber optics, and other utilities.

Trenchless methods like horizontal directional drilling (HDD) provide a less invasive way to get power lines under roads and railways by creating a controlled, curved bore path that starts at a shallow entry angle, deepens to pass obstacles, and resurfaces at a precise exit point. But HDD is even more expensive than open trenching due to specialized equipment, complex workflows, and the risk of damaging existing infrastructure.

Given the steep costs, utilities often prioritize cheaper fire mitigation strategies like trimming back nearby trees and other plants, using insulated conductors, and stepping up routine inspections and repairs. While not as effective as undergrounding, these measures have been the go-to option, largely because faster, cheaper underground construction methods don’t yet exist.

Ted Kury, director of energy studies at the University of Florida’s Public Utility Research Center, who has extensively studied the costs and benefits of undergrounding, says technologies implementing directional drilling improvements “could make undergrounding more practical in urban or densely populated areas where open trenching, and its attendant disruptions to the surrounding infrastructure, could result in untenable costs.”

Earthworm-Inspired Robotics for Power Lines

In Case’s worm-inspired robot, alternating sections are designed to expand and retract to anchor and advance the machine. This flexible force increases precision and reduces the risk of impacting and breaking pipes. Conventional methods require large turning radii exceeding 300 meters, but Case’s 1.5-meter turning radius will enable the device to flexibly maneuver around existing infrastructure.

“We use actuators to change the length and diameter of each segment,” says Kathryn Daltorio, an associate engineering professor and co-director of Case’s Biologically-Inspired Robotics Lab. “The short and fat segments press against the walls of the burrow, then they anchor so the thin segments can advance forward. If two segments aren’t touching the ground but they’re changing length at the same time, your anchors don’t slip and you advance forward.”

Daltorio and her colleagues have studied earthworm-inspired robotics for over a decade, originally envisioning the technology for surgical and confined-space applications before recognizing its potential for undergrounding power lines.

Case Western Reserve University’s worm-like digging robot can turn faster than other drilling techniques to avoid obstacles.Kathryn Daltorio/Case School of Engineering

Traditional HDD relies on pushing a drill head through soil, requiring more force as the bore length grows. Case’s drilling concept generates the force needed for the tip from the peristaltic segments within the borehole. As the path gets longer, only the front segments dig deeper. “If the robot hits something, operators can pull back and change directions, burrowing along the way to complete the circuit by changing the depth,” Daltorio says.

Another key difference from HDD is integrated conduit installation. In HDD, the drill goes through the entire length first, and then the power conduit is pulled through. Case’s peristaltic robot lays the conduit while traveling, reducing the overall installation time.

Advancements in Burrowing Precision

“The peristaltic conduit approach is fascinating [and] certainly seems to be addressing concerns regarding the sheer variety of underground obstacles,” says the University of Florida’s Kury. However, he highlights a larger concern with undergrounding innovations—not just Case’s—in meeting a constantly evolving environment. Today’s underground will look very different in 10 years, as soil profiles shift, trees grow, animals tunnel, and people dig and build. “Underground cables will live for decades, and the sustainability of these technologies depends on how they adapt to this changing structure,” Kury added.

Daltorio notes that current undergrounding practices involve pouring concrete around the lines before backfilling to protect them from future excavation, a challenge for existing trenchless methods. But Case’s project brings two major benefits. First, by better understanding borehole design, engineers have more flexibility in choosing conduit materials to match the standards for particular environments. Also, advancements in burrowing precision could minimize the likelihood of future disruptions from human activities.

The research team is exploring different ways to reinforce the digging robot’s exterior while it’s underground.Olivia Gatchall

Daltorio’s team is collaborating with several partners, with Auburn University in Alabama contributing geotechnical expertise, Stony Brook University in New York running the modeling, and the University of Texas at Austin studying sediment interactions.

The project aims to halve undergrounding costs, though Daltorio cautions that it’s too early to commit to a specific cost model. Still, the time-saving potential appears promising. “With conventional approaches, planning, permitting and scheduling can take months,” Daltorio says. “By simplifying the process, it might be a few inspections at the endpoints, a few days of autonomous burrowing with minimal disruption to traffic above, followed by a few days of cleaning, splicing, and inspection.”



After January’s Southern California wildfires, the question of burying energy infrastructure to prevent future fires has gained renewed urgency in the state. While the exact cause of the fires remains under investigation, California utilities have spent years undergrounding power lines to mitigate fire risks. Pacific Gas & Electric, which has installed over 1,287 kilometers of underground power lines since 2021, estimates the method is 98 percent effective in reducing ignition threats. Southern California Edison has buried over 40 percent of its high-risk distribution lines, and 63 percent of San Diego Gas & Electric’s regional distribution system is now underground.

Still, the exorbitant cost of underground construction leaves much of the U.S. power grid’s 8.8 million kilometers of distribution lines and 180 million utility poles exposed to tree strikes, flying debris, and other opportunities for sparks to cascade into a multi-acre blaze. Recognizing the need for cost-effective undergrounding solutions, the U.S. Department of Energy launched GOPHURRS in January 2024. The three-year program pours $34 million into 12 projects to develop more efficient undergrounding technologies that minimize surface disruptions while supporting medium-voltage power lines.

One recipient, Case Western Reserve University in Cleveland, Ohio, is building a self-propelled robotic sleeve that mimics earthworms’ characteristic peristaltic movement to advance through soil. Awarded $2 million, Case’s “peristaltic conduit” concept hopes to more precisely navigate underground and reduce the risk of unintended damage, such as breaking an existing pipe.

Why Is Undergrounding So Expensive?

Despite its benefits, undergrounding remains cost-prohibitive at US $1.1 to $3.7 million per kilometer ($1.8 to $6 million per mile) for distribution lines and $3.7 to $62 million per kilometer for transmission lines, according to estimates from California’s three largest utilities. That’s significantly more than overhead infrastructure, which costs $394,000 to $472,000 per kilometer for distribution lines and $621,000 to $6.83 million per kilometer for transmission lines.

The most popular method of undergrounding power lines, called open trenching, requires extensive excavation, conduit installation, and backfilling, making it expensive and logistically complicated. And it’s often impractical in dense urban areas where underground infrastructure is already congested with plumbing, fiber optics, and other utilities.

Trenchless methods like horizontal directional drilling (HDD) provide a less invasive way to get power lines under roads and railways by creating a controlled, curved bore path that starts at a shallow entry angle, deepens to pass obstacles, and resurfaces at a precise exit point. But HDD is even more expensive than open trenching due to specialized equipment, complex workflows, and the risk of damaging existing infrastructure.

Given the steep costs, utilities often prioritize cheaper fire mitigation strategies like trimming back nearby trees and other plants, using insulated conductors, and stepping up routine inspections and repairs. While not as effective as undergrounding, these measures have been the go-to option, largely because faster, cheaper underground construction methods don’t yet exist.

Ted Kury, director of energy studies at the University of Florida’s Public Utility Research Center, who has extensively studied the costs and benefits of undergrounding, says technologies implementing directional drilling improvements “could make undergrounding more practical in urban or densely populated areas where open trenching, and its attendant disruptions to the surrounding infrastructure, could result in untenable costs.”

Earthworm-Inspired Robotics for Power Lines

In Case’s worm-inspired robot, alternating sections are designed to expand and retract to anchor and advance the machine. This flexible force increases precision and reduces the risk of impacting and breaking pipes. Conventional methods require large turning radii exceeding 300 meters, but Case’s 1.5-meter turning radius will enable the device to flexibly maneuver around existing infrastructure.

“We use actuators to change the length and diameter of each segment,” says Kathryn Daltorio, an associate engineering professor and co-director of Case’s Biologically-Inspired Robotics Lab. “The short and fat segments press against the walls of the burrow, then they anchor so the thin segments can advance forward. If two segments aren’t touching the ground but they’re changing length at the same time, your anchors don’t slip and you advance forward.”

Daltorio and her colleagues have studied earthworm-inspired robotics for over a decade, originally envisioning the technology for surgical and confined-space applications before recognizing its potential for undergrounding power lines.

Case Western Reserve University’s worm-like digging robot can turn faster than other drilling techniques to avoid obstacles.Kathryn Daltorio/Case School of Engineering

Traditional HDD relies on pushing a drill head through soil, requiring more force as the bore length grows. Case’s drilling concept generates the force needed for the tip from the peristaltic segments within the borehole. As the path gets longer, only the front segments dig deeper. “If the robot hits something, operators can pull back and change directions, burrowing along the way to complete the circuit by changing the depth,” Daltorio says.

Another key difference from HDD is integrated conduit installation. In HDD, the drill goes through the entire length first, and then the power conduit is pulled through. Case’s peristaltic robot lays the conduit while traveling, reducing the overall installation time.

Advancements in Burrowing Precision

“The peristaltic conduit approach is fascinating [and] certainly seems to be addressing concerns regarding the sheer variety of underground obstacles,” says the University of Florida’s Kury. However, he highlights a larger concern with undergrounding innovations—not just Case’s—in meeting a constantly evolving environment. Today’s underground will look very different in 10 years, as soil profiles shift, trees grow, animals tunnel, and people dig and build. “Underground cables will live for decades, and the sustainability of these technologies depends on how they adapt to this changing structure,” Kury added.

Daltorio notes that current undergrounding practices involve pouring concrete around the lines before backfilling to protect them from future excavation, a challenge for existing trenchless methods. But Case’s project brings two major benefits. First, by better understanding borehole design, engineers have more flexibility in choosing conduit materials to match the standards for particular environments. Also, advancements in burrowing precision could minimize the likelihood of future disruptions from human activities.

The research team is exploring different ways to reinforce the digging robot’s exterior while it’s underground.Olivia Gatchall

Daltorio’s team is collaborating with several partners, with Auburn University in Alabama contributing geotechnical expertise, Stony Brook University in New York running the modeling, and the University of Texas at Austin studying sediment interactions.

The project aims to halve undergrounding costs, though Daltorio cautions that it’s too early to commit to a specific cost model. Still, the time-saving potential appears promising. “With conventional approaches, planning, permitting and scheduling can take months,” Daltorio says. “By simplifying the process, it might be a few inspections at the endpoints, a few days of autonomous burrowing with minimal disruption to traffic above, followed by a few days of cleaning, splicing, and inspection.”

Pages