Feed aggregator



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Eurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPANRoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDSCybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

DARPA’s Robotic Autonomy in Complex Environments with Resiliency (RACER) program recently conducted its fourth experiment (E4) to assess the performance of off-road unmanned vehicles. These tests, conducted in Texas in late 2023, were the first time the program tested its new vehicle, the RACER Heavy Platform (RHP). The video shows autonomous route following for mobility testing and demonstration, including sensor point cloud visualizations.

The 12-ton RHP is significantly larger than the 2-ton RACER Fleet Vehicles (RFVs) already in use in the program. Using the algorithms on a very different platform helps RACER toward its goal of platform agnostic autonomy of combat-scale vehicles in complex, mission-relevant off-road environments that are significantly more unpredictable than on-road conditions.

[ DARPA ]

In our new Science Robotics paper, we introduce an autonomous navigation system developed for our wheeled-legged quadrupeds, designed for fast and efficient navigation within large urban environments. Driven by neural network policies, our simple, unified control system enables smooth gait transitions, smart navigation planning, and highly responsive obstacle avoidance in populated urban environments.

[ Github ]

Generation 7 of “Phoenix” robots include improved human-like range of motion. Improvements in uptime, visual perception, and tactile sensing increase the capability of the system to perform complex tasks over longer periods. Design iteration significantly decreases build time. The speed at which new tasks can be automated has increased 50x, marking a major inflection point in task automation speed.

[ Sanctuary AI ]

We’re proud to celebrate our one millionth commercial delivery—that’s a million deliveries of lifesaving blood, critical vaccines, last-minute groceries, and so much more. But the best part? This is just the beginning.

[ Zipline ]

Work those hips!

[ RoMeLa ]

This thing is kind of terrifying, and I’m fascinated by it.

[ AVFL ]

We propose a novel humanoid TWIMP, which combines a human mimetic musculoskeletal upper limb with a two-wheel inverted pendulum. By combining the benefit of a musculoskeletal humanoid, which can achieve soft contact with the external environment, and the benefit of a two-wheel inverted pendulum with a small footprint and high mobility, we can easily investigate learning control systems in environments with contact and sudden impact.

From Humanoids 2018.

[ Paper ] via [ JSK Lab ]

Thanks, Kento!

Ballbots are uniquely capable of pushing wheelchairs—arguably better than legged platforms, because they can move in any direction without having to reposition themselves.

[ Paper ]

Charge Robotics is building robots that automate the most labor-intensive parts of solar construction. Solar has rapidly become the cheapest form of power generation in many regions. Demand has skyrocketed, and now the primary barrier to getting it installed is labor logistics and bandwidth. Our robots remove the labor bottleneck, allowing construction companies to meet the rising demand for solar, and enabling the world to switch to renewables faster.

[ Charge Robotics ]

Robots doing precision assembly is cool and all, but those vibratory bowl sorters seem like magic.

[ FANUC ]

The QUT CGRAS project’s robot prototype captures images of baby corals, destined for the Great Barrier Reef, monitoring and counting them in grow tanks. The team uses state-of-the-art AI algorithms to automatically detect and count these coral babies and track their growth over time – saving human counting time and money.

[ QUT ]

We are conducting research to develop Unmanned Aerial Systems to aid in wildfire monitoring. The hazardous, dynamic, and visually degraded environment of wildfire gives rise to many unsolved fundamental research challenges.

[ CMU ]

Here’s a little more video of that robot elevator, but I’m wondering why it’s so slow—clamp those bots in there and rocket that elevator up and down!

[ NAVER ]

In March 2024, Northwestern University’s Center for Robotics and Biosystems demonstrated the Omnid mobile collaborative robots (mocobots) at MARS, a conference in Ojai, California on Machine learning, Automation, Robotics, and Space, hosted by Jeff Bezos. The “swarm” of mocobots is designed to collaborate with humans, allowing a human to easily manipulate large, heavy, or awkward payloads. In this case, the mocobots cancel the effect of gravity, so the human can easily manipulate the mock airplane wing in six degrees of freedom. In general, human-cobot systems combine the best of human capabilities with the best of robot capabilities.

[ Northwestern ]

There’s something so soothing about watching a lithium battery get wrecked and burn for 8 minutes.

[ Hardcore Robotics ]

EELS, or Exobiology Extant Life Surveyor, is a versatile, snake-like robot designed for exploration of previously inaccessible terrain. This talk on EELS was presented at the 2024 Amazon MARS conference.

[ JPL ]

The convergence of AI and robotics will unlock a wonderful new world of possibilities in everyday life, says robotics and AI pioneer Daniela Rus. Diving into the way machines think, she reveals how “liquid networks”—a revolutionary class of AI that mimics the neural processes of simple organisms—could help intelligent machines process information more efficiently and give rise to “physical intelligence” that will enable AI to operate beyond digital confines and engage dynamically in the real world.

[ TED ]



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Eurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPANRoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDSCybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

DARPA’s Robotic Autonomy in Complex Environments with Resiliency (RACER) program recently conducted its fourth experiment (E4) to assess the performance of off-road unmanned vehicles. These tests, conducted in Texas in late 2023, were the first time the program tested its new vehicle, the RACER Heavy Platform (RHP). The video shows autonomous route following for mobility testing and demonstration, including sensor point cloud visualizations.

The 12-ton RHP is significantly larger than the 2-ton RACER Fleet Vehicles (RFVs) already in use in the program. Using the algorithms on a very different platform helps RACER toward its goal of platform agnostic autonomy of combat-scale vehicles in complex, mission-relevant off-road environments that are significantly more unpredictable than on-road conditions.

[ DARPA ]

In our new Science Robotics paper, we introduce an autonomous navigation system developed for our wheeled-legged quadrupeds, designed for fast and efficient navigation within large urban environments. Driven by neural network policies, our simple, unified control system enables smooth gait transitions, smart navigation planning, and highly responsive obstacle avoidance in populated urban environments.

[ Github ]

Generation 7 of “Phoenix” robots include improved human-like range of motion. Improvements in uptime, visual perception, and tactile sensing increase the capability of the system to perform complex tasks over longer periods. Design iteration significantly decreases build time. The speed at which new tasks can be automated has increased 50x, marking a major inflection point in task automation speed.

[ Sanctuary AI ]

We’re proud to celebrate our one millionth commercial delivery—that’s a million deliveries of lifesaving blood, critical vaccines, last-minute groceries, and so much more. But the best part? This is just the beginning.

[ Zipline ]

Work those hips!

[ RoMeLa ]

This thing is kind of terrifying, and I’m fascinated by it.

[ AVFL ]

We propose a novel humanoid TWIMP, which combines a human mimetic musculoskeletal upper limb with a two-wheel inverted pendulum. By combining the benefit of a musculoskeletal humanoid, which can achieve soft contact with the external environment, and the benefit of a two-wheel inverted pendulum with a small footprint and high mobility, we can easily investigate learning control systems in environments with contact and sudden impact.

From Humanoids 2018.

[ Paper ] via [ JSK Lab ]

Thanks, Kento!

Ballbots are uniquely capable of pushing wheelchairs—arguably better than legged platforms, because they can move in any direction without having to reposition themselves.

[ Paper ]

Charge Robotics is building robots that automate the most labor-intensive parts of solar construction. Solar has rapidly become the cheapest form of power generation in many regions. Demand has skyrocketed, and now the primary barrier to getting it installed is labor logistics and bandwidth. Our robots remove the labor bottleneck, allowing construction companies to meet the rising demand for solar, and enabling the world to switch to renewables faster.

[ Charge Robotics ]

Robots doing precision assembly is cool and all, but those vibratory bowl sorters seem like magic.

[ FANUC ]

The QUT CGRAS project’s robot prototype captures images of baby corals, destined for the Great Barrier Reef, monitoring and counting them in grow tanks. The team uses state-of-the-art AI algorithms to automatically detect and count these coral babies and track their growth over time – saving human counting time and money.

[ QUT ]

We are conducting research to develop Unmanned Aerial Systems to aid in wildfire monitoring. The hazardous, dynamic, and visually degraded environment of wildfire gives rise to many unsolved fundamental research challenges.

[ CMU ]

Here’s a little more video of that robot elevator, but I’m wondering why it’s so slow—clamp those bots in there and rocket that elevator up and down!

[ NAVER ]

In March 2024, Northwestern University’s Center for Robotics and Biosystems demonstrated the Omnid mobile collaborative robots (mocobots) at MARS, a conference in Ojai, California on Machine learning, Automation, Robotics, and Space, hosted by Jeff Bezos. The “swarm” of mocobots is designed to collaborate with humans, allowing a human to easily manipulate large, heavy, or awkward payloads. In this case, the mocobots cancel the effect of gravity, so the human can easily manipulate the mock airplane wing in six degrees of freedom. In general, human-cobot systems combine the best of human capabilities with the best of robot capabilities.

[ Northwestern ]

There’s something so soothing about watching a lithium battery get wrecked and burn for 8 minutes.

[ Hardcore Robotics ]

EELS, or Exobiology Extant Life Surveyor, is a versatile, snake-like robot designed for exploration of previously inaccessible terrain. This talk on EELS was presented at the 2024 Amazon MARS conference.

[ JPL ]

The convergence of AI and robotics will unlock a wonderful new world of possibilities in everyday life, says robotics and AI pioneer Daniela Rus. Diving into the way machines think, she reveals how “liquid networks”—a revolutionary class of AI that mimics the neural processes of simple organisms—could help intelligent machines process information more efficiently and give rise to “physical intelligence” that will enable AI to operate beyond digital confines and engage dynamically in the real world.

[ TED ]



What’s a secret to getting more students to participate in an IEEE society? Give them a seat at the table so they have a say in how the organization is run.

That’s what the IEEE Robotics and Automation Society has done. Budding engineers serve on the RAS board of directors, have voting privileges, and work within technical committees.

“They have been given a voice in how the society runs because, in the end, students are among the main beneficiaries,” says Enrica Tricomi, chair of the RAS’s student activities committee. The SAC is responsible for student programs and benefits. It also makes recommendations to the society’s board about new offerings.

A Guide for Inspiring the Next Generation Roboticists

The IEEE Robotics and Automation Society isn’t focused only on boosting its student membership. It also wants to get more young people interested in pursuing a robotics career. One way the society’s volunteers try to inspire the next generation of roboticists is through IEEE Spectrum’s award-winning Robots website. The interactive guide features more than 250 real-world robots, with thousands of photos, videos, and exclusive interactives, plus news and detailed technical specifications.

The site is designed for anyone interested in robotics, including expert and beginner enthusiasts, researchers, entrepreneurs, students, STEM educators, and other teachers.

Schools and students across the globe use the site. Volunteers on the RAS steering committee suggest robots to add, and they help support new content creation on the site.

“You feel listened to and valued whenever there are official decisions to be made, because the board also wants to know the perspective of students on how to offer benefits to the RAS members, especially for young researchers, since hopefully they will be the society’s future leaders,” says Tricomi, a bioengineer who is pursuing a Ph.D. in robotics at Heidelberg University, in Germany.

The society’s approach has paid off. Since 2018, student membership has grown by more than 50 percent to 5,436. The number of society chapters at student branches has increased from 312 in 2021 to 450.

The ability to express opinions isn’t the only reason students are joining, Tricomi says. The society recently launched several programs to engage them, including career fairs, travel grants, and networking opportunities with researchers.

Giving students leadership opportunities

As SAC chair, Tricomi is a voting member of RAS’s administrative committee, which oversees the society’s operations. She says having voting privileges shows “how important it is to the society to have student representation.”

“We receive a lot of support from the highest levels of the society, specifically the society president, Aude Billard, and past president Frank Chongwoo Park,” Tricomi says. “RAS boards have been rejuvenated to engage students even more and represent their voices. The chairs of these boards—including technical activities, conference activities, and publication activities—want to know the SAC chair and cochairs’ opinion on whether the new activities are benefiting students.”

Student members now can serve on IEEE technical committees that involve robotics in the role of student representatives.

That was an initiative from Kyujin Cho, IEEE Technical Activities vice president. Tricomi says the designation benefits young engineers because they learn about ongoing research in their field and because they have direct access to researchers.

Student representatives also help organize conference workshops.

The students had a hand in creating a welcome kit for conference attendees. The initiative, led by Amy Kyungwon Han, Technical Activities associate vice president, lists each day’s activities and their location.

“I think that all of us, especially those who are younger, can actively contribute and make a difference not only for the society and for ourselves but also for our peers.”

Being engaged with the technical topic in which the students work provides them with career growth, visibility in their field, and an opportunity to share their point of view with peers, Tricomi says.

“Being young, the first time that you express your opinion in public, you always feel uncomfortable because you don’t have much experience,” she says. “This is the opposite of the message the society wants to send. We want to listen to students’ voices because they are an important part of the society.”

Tricomi herself recently became a member of the Technical Activities board.

She joined, she says, because “this is kind of a technical family by choice. And you want to be active and contribute to your family, right? I think that all of us, especially those who are younger, can actively contribute and make a difference not only for the society and for ourselves but also for our peers.”

Job fairs and travel grants

Several new initiatives have been rolled out at the society’s flagship conferences. The meetings have always included onsite events for students to network with each other and to mingle with researchers over lunch. The events give the budding engineers an opportunity to talk with leaders they normally wouldn’t meet, Tricomi says.

“It’s much appreciated, especially by very young or shy students,” she says.

Some luncheons have included sessions on career advice from leaders in academia and industry, or from startup founders—giving the students a sense of what it’s like to work for such organizations.

Conferences now include career fairs, where students can meet with hiring companies.

The society also developed a software platform that allows candidates to upload their résumé onsite. If they are a match for an open position, interviews can be held on the spot.

A variety of travel grants have been made available to students with limited resources so they can present their research papers at the society’s major conferences. More than 200 travel grants were awarded to the 2023 IEEE International Conference on Robotics and Automation, Tricomi says.

“It’s very important for them to be there, presenting their work, gaining visibility, sharing their research, and also networking,” she says.

The new IDEA (inclusion, diversity, equity, and accessibility) travel grant for underrepresented groups was established by the society’s IEEE Women in Engineering committee and its chair, Karinne Ramirez Amaro. The grant can help students who are not presenters to attend conferences. It also helps increase diversity within the robotics field, Tricomi says.

The Member Support Program is a new initiative from the RAS member activities board’s vice president, Katja Mombaur, and past vice president Stefano Stramigioli. Financial support to attend the annual International Conference on Intelligent Robots and Systems is available to members and students who have contributed to the society’s mission-related activities. The projects include organizing workshops, discussions, lectures, or networking events at conferences or sponsored events; serving on boards or committees; or writing papers that were accepted for publication by conferences or journals.

The society also gets budding engineers involved in publication activities through its Young Reviewers Program, which introduces them to best practices for peer review. Senior reviewers assign the students papers to check and oversee their work.

Personal and professional growth opportunities

Tricomi joined the society in 2021 shortly after starting her Ph.D. program at Heidelberg. Her research is in wearable assistive robotics for human augmentation or rehabilitation purposes. She holds a master’s degree in biomedical engineering from Politecnico di Torino, in Italy.

She was new to the field of robotics, so her Ph.D. advisor, IEEE Senior Member Lorenzo Masia, encouraged her to volunteer for the society. She is now transitioning to the role of SAC senior chair, and she says she is eager to collaborate with the new team to promote student and early career engagement within the robotics field.

“I’ve realized I’ve grown up a lot in the two years since I started as chair,” she says. “At the beginning, I was much shier. I really want my colleagues to experience the same personal and professional growth as I have. You learn not only technical skills but also soft skills, which are very important in your career.”



What’s a secret to getting more students to participate in an IEEE society? Give them a seat at the table so they have a say in how the organization is run.

That’s what the IEEE Robotics and Automation Society has done. Budding engineers serve on the RAS board of directors, have voting privileges, and work within technical committees.

“They have been given a voice in how the society runs because, in the end, students are among the main beneficiaries,” says Enrica Tricomi, chair of the RAS’s student activities committee. The SAC is responsible for student programs and benefits. It also makes recommendations to the society’s board about new offerings.

A Guide for Inspiring the Next Generation Roboticists

The IEEE Robotics and Automation Society isn’t focused only on boosting its student membership. It also wants to get more young people interested in pursuing a robotics career. One way the society’s volunteers try to inspire the next generation of roboticists is through IEEE Spectrum’s award-winning Robots website. The interactive guide features more than 250 real-world robots, with thousands of photos, videos, and exclusive interactives, plus news and detailed technical specifications.

The site is designed for anyone interested in robotics, including expert and beginner enthusiasts, researchers, entrepreneurs, students, STEM educators, and other teachers.

Schools and students across the globe use the site. Volunteers on the RAS steering committee suggest robots to add, and they help support new content creation on the site.

“You feel listened to and valued whenever there are official decisions to be made, because the board also wants to know the perspective of students on how to offer benefits to the RAS members, especially for young researchers, since hopefully they will be the society’s future leaders,” says Tricomi, a bioengineer who is pursuing a Ph.D. in robotics at Heidelberg University, in Germany.

The society’s approach has paid off. Since 2018, student membership has grown by more than 50 percent to 5,436. The number of society chapters at student branches has increased from 312 in 2021 to 450.

The ability to express opinions isn’t the only reason students are joining, Tricomi says. The society recently launched several programs to engage them, including career fairs, travel grants, and networking opportunities with researchers.

Giving students leadership opportunities

As SAC chair, Tricomi is a voting member of RAS’s administrative committee, which oversees the society’s operations. She says having voting privileges shows “how important it is to the society to have student representation.”

“We receive a lot of support from the highest levels of the society, specifically the society president, Aude Billard, and past president Frank Chongwoo Park,” Tricomi says. “RAS boards have been rejuvenated to engage students even more and represent their voices. The chairs of these boards—including technical activities, conference activities, and publication activities—want to know the SAC chair and cochairs’ opinion on whether the new activities are benefiting students.”

Student members now can serve on IEEE technical committees that involve robotics in the role of student representatives.

That was an initiative from Kyujin Cho, IEEE Technical Activities vice president. Tricomi says the designation benefits young engineers because they learn about ongoing research in their field and because they have direct access to researchers.

Student representatives also help organize conference workshops.

The students had a hand in creating a welcome kit for conference attendees. The initiative, led by Amy Kyungwon Han, Technical Activities associate vice president, lists each day’s activities and their location.

“I think that all of us, especially those who are younger, can actively contribute and make a difference not only for the society and for ourselves but also for our peers.”

Being engaged with the technical topic in which the students work provides them with career growth, visibility in their field, and an opportunity to share their point of view with peers, Tricomi says.

“Being young, the first time that you express your opinion in public, you always feel uncomfortable because you don’t have much experience,” she says. “This is the opposite of the message the society wants to send. We want to listen to students’ voices because they are an important part of the society.”

Tricomi herself recently became a member of the Technical Activities board.

She joined, she says, because “this is kind of a technical family by choice. And you want to be active and contribute to your family, right? I think that all of us, especially those who are younger, can actively contribute and make a difference not only for the society and for ourselves but also for our peers.”

Job fairs and travel grants

Several new initiatives have been rolled out at the society’s flagship conferences. The meetings have always included onsite events for students to network with each other and to mingle with researchers over lunch. The events give the budding engineers an opportunity to talk with leaders they normally wouldn’t meet, Tricomi says.

“It’s much appreciated, especially by very young or shy students,” she says.

Some luncheons have included sessions on career advice from leaders in academia and industry, or from startup founders—giving the students a sense of what it’s like to work for such organizations.

Conferences now include career fairs, where students can meet with hiring companies.

The society also developed a software platform that allows candidates to upload their résumé onsite. If they are a match for an open position, interviews can be held on the spot.

A variety of travel grants have been made available to students with limited resources so they can present their research papers at the society’s major conferences. More than 200 travel grants were awarded to the 2023 IEEE International Conference on Robotics and Automation, Tricomi says.

“It’s very important for them to be there, presenting their work, gaining visibility, sharing their research, and also networking,” she says.

The new IDEA (inclusion, diversity, equity, and accessibility) travel grant for underrepresented groups was established by the society’s IEEE Women in Engineering committee and its chair, Karinne Ramirez Amaro. The grant can help students who are not presenters to attend conferences. It also helps increase diversity within the robotics field, Tricomi says.

The Member Support Program is a new initiative from the RAS member activities board’s vice president, Katja Mombaur, and past vice president Stefano Stramigioli. Financial support to attend the annual International Conference on Intelligent Robots and Systems is available to members and students who have contributed to the society’s mission-related activities. The projects include organizing workshops, discussions, lectures, or networking events at conferences or sponsored events; serving on boards or committees; or writing papers that were accepted for publication by conferences or journals.

The society also gets budding engineers involved in publication activities through its Young Reviewers Program, which introduces them to best practices for peer review. Senior reviewers assign the students papers to check and oversee their work.

Personal and professional growth opportunities

Tricomi joined the society in 2021 shortly after starting her Ph.D. program at Heidelberg. Her research is in wearable assistive robotics for human augmentation or rehabilitation purposes. She holds a master’s degree in biomedical engineering from Politecnico di Torino, in Italy.

She was new to the field of robotics, so her Ph.D. advisor, IEEE Senior Member Lorenzo Masia, encouraged her to volunteer for the society. She is now transitioning to the role of SAC senior chair, and she says she is eager to collaborate with the new team to promote student and early career engagement within the robotics field.

“I’ve realized I’ve grown up a lot in the two years since I started as chair,” she says. “At the beginning, I was much shier. I really want my colleagues to experience the same personal and professional growth as I have. You learn not only technical skills but also soft skills, which are very important in your career.”



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup German Open: 17–21 April 2024, KASSEL, GERMANYAUVSI XPONENTIAL 2024: 22–25 April 2024, SAN DIEGOEurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPANRoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS

Enjoy today’s videos!

In the SpaceHopper project, students at ETH Zurich developed a robot capable of moving in low gravity environments through hopping motions. It is intended to be used in future space missions to explore small celestial bodies.

The exploration of asteroids and moons could provide insights into the formation of the universe, and they may contain valuable minerals that humanity could use in the future.The project began in 2021 as an ETH focus project for bachelor’s students. Now, it is being continued as a regular research project. A particular challenge in developing exploration robots for asteroids is that, unlike larger celestial bodies like Earth, there is low gravity on asteroids and moons. The students have therefore tested their robot’s functionality in zero gravity during a parabolic flight. The parabolic flight was conducted in collaboration with the European Space Agency as part of the ESA Academy Experiments Programme.

[ SpaceHopper ]

It’s still kind of wild to me that it’s now possible to just build a robot like Menteebot. Having said that, at present it looks to be a fairly long way from being able to usefully do tasks in a reliable way.

[ Menteebot ]

Look, it’s the robot we all actually want!

[ Github ]

I wasn’t quite sure what made this building especially “robot-friendly” until I saw the DEDICATED ROBOT ELEVATOR.

[ NAVER ]

We are glad to announce the latest updates with our humanoid robot CL-1. In the test, it demonstrates stair climbing in a single stride based on real-time terrain perception. For the very first time, CL-1 accomplishes back and forth running, in a stable and dynamic way!

[ LimX Dynamics ]

EEWOC [Extended-reach Enhanced Wheeled Orb for Climbing] uses a unique locomotion scheme to climb complex steel structures with its magnetic grippers. Its lightweight and highly extendable tape spring limb can reach over 1.2 meters, allowing it to traverse gaps and obstacles much larger than other existing climbing robots. Its ability to bend allows it to reach around corners and over ledges, and it can transition between surfaces easily thanks to assistance from its wheels. The wheels also let it to drive more quickly and efficiently on the ground. These features make EEWOC well-suited for climbing the complex steel structures seen in real-world environments.

[ Paper ]

Thanks to its “buttock-contact sensors,” JSK’s musculoskeletal humanoid has mastered(ish) the chair-scoot.

[ University of Tokyo ]

Thanks, Kento!

Physical therapy seems like a great application for a humaonid robot when you don’t really need that humanoid robot to do much of anything.

[ Fourier Intelligence ]

NASA’s Ingenuity Mars helicopter became the first vehicle to achieve powered, controlled flight on another planet when it took to the Martian skies on 19 April 2021. This video maps the location of the 72 flights that the helicopter took over the course of nearly three years. Ingenuity far surpassed expectations—soaring higher and faster than previously imagined.

[ JPL ]

No thank you!

[ Paper ]

MERL introduces a new autonomous robotic assembly technology, offering an initial glimpse into how robots will work in future factories. Unlike conventional approaches where humans set pre-conditions for assembly, our technology empowers robots to adapt to diverse scenarios. We showcase the autonomous assembly of a gear box that was demonstrated live at CES2024.

[ Mitsubishi ]

Thanks, Devesh!

In November, 2023 Digit was deployed in a distribution center unloading totes from an AMR as part of regular facility operations, including a shift during Cyber Monday.

[ Agility ]

The PR2 just refuses to die. Last time I checked, official support for it ceased in 2016!

[ University of Bremen ]

DARPA’s Air Combat Evolution (ACE) program has achieved the first-ever in-air tests of AI algorithms autonomously flying a fighter jet against a human-piloted fighter jet in within-visual-range combat scenarios (sometimes referred to as “dogfighting”).In this video, team members discuss what makes the ACE program unlike other aerospace autonomy projects and how it represents a transformational moment in aerospace history, establishing a foundation for ethical, trusted, human-machine teaming for complex military and civilian applications.

[ DARPA ]

Sometimes robots that exist for one single purpose that they only do moderately successfully while trying really hard are the best of robots.

[ CMU ]



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup German Open: 17–21 April 2024, KASSEL, GERMANYAUVSI XPONENTIAL 2024: 22–25 April 2024, SAN DIEGOEurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPANRoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS

Enjoy today’s videos!

In the SpaceHopper project, students at ETH Zurich developed a robot capable of moving in low gravity environments through hopping motions. It is intended to be used in future space missions to explore small celestial bodies.

The exploration of asteroids and moons could provide insights into the formation of the universe, and they may contain valuable minerals that humanity could use in the future.The project began in 2021 as an ETH focus project for bachelor’s students. Now, it is being continued as a regular research project. A particular challenge in developing exploration robots for asteroids is that, unlike larger celestial bodies like Earth, there is low gravity on asteroids and moons. The students have therefore tested their robot’s functionality in zero gravity during a parabolic flight. The parabolic flight was conducted in collaboration with the European Space Agency as part of the ESA Academy Experiments Programme.

[ SpaceHopper ]

It’s still kind of wild to me that it’s now possible to just build a robot like Menteebot. Having said that, at present it looks to be a fairly long way from being able to usefully do tasks in a reliable way.

[ Menteebot ]

Look, it’s the robot we all actually want!

[ Github ]

I wasn’t quite sure what made this building especially “robot-friendly” until I saw the DEDICATED ROBOT ELEVATOR.

[ NAVER ]

We are glad to announce the latest updates with our humanoid robot CL-1. In the test, it demonstrates stair climbing in a single stride based on real-time terrain perception. For the very first time, CL-1 accomplishes back and forth running, in a stable and dynamic way!

[ LimX Dynamics ]

EEWOC [Extended-reach Enhanced Wheeled Orb for Climbing] uses a unique locomotion scheme to climb complex steel structures with its magnetic grippers. Its lightweight and highly extendable tape spring limb can reach over 1.2 meters, allowing it to traverse gaps and obstacles much larger than other existing climbing robots. Its ability to bend allows it to reach around corners and over ledges, and it can transition between surfaces easily thanks to assistance from its wheels. The wheels also let it to drive more quickly and efficiently on the ground. These features make EEWOC well-suited for climbing the complex steel structures seen in real-world environments.

[ Paper ]

Thanks to its “buttock-contact sensors,” JSK’s musculoskeletal humanoid has mastered(ish) the chair-scoot.

[ University of Tokyo ]

Thanks, Kento!

Physical therapy seems like a great application for a humaonid robot when you don’t really need that humanoid robot to do much of anything.

[ Fourier Intelligence ]

NASA’s Ingenuity Mars helicopter became the first vehicle to achieve powered, controlled flight on another planet when it took to the Martian skies on 19 April 2021. This video maps the location of the 72 flights that the helicopter took over the course of nearly three years. Ingenuity far surpassed expectations—soaring higher and faster than previously imagined.

[ JPL ]

No thank you!

[ Paper ]

MERL introduces a new autonomous robotic assembly technology, offering an initial glimpse into how robots will work in future factories. Unlike conventional approaches where humans set pre-conditions for assembly, our technology empowers robots to adapt to diverse scenarios. We showcase the autonomous assembly of a gear box that was demonstrated live at CES2024.

[ Mitsubishi ]

Thanks, Devesh!

In November, 2023 Digit was deployed in a distribution center unloading totes from an AMR as part of regular facility operations, including a shift during Cyber Monday.

[ Agility ]

The PR2 just refuses to die. Last time I checked, official support for it ceased in 2016!

[ University of Bremen ]

DARPA’s Air Combat Evolution (ACE) program has achieved the first-ever in-air tests of AI algorithms autonomously flying a fighter jet against a human-piloted fighter jet in within-visual-range combat scenarios (sometimes referred to as “dogfighting”).In this video, team members discuss what makes the ACE program unlike other aerospace autonomy projects and how it represents a transformational moment in aerospace history, establishing a foundation for ethical, trusted, human-machine teaming for complex military and civilian applications.

[ DARPA ]

Sometimes robots that exist for one single purpose that they only do moderately successfully while trying really hard are the best of robots.

[ CMU ]



The paper delves into the significance of Secure Runtime Assurance (SRTA) for the operational integrity and safety of autonomous robotics groups, with a focus on drones. It presents a comprehensive view of how SRTA has evolved from traditional runtime assurance methods to address the dynamic and complex nature of autonomous systems. Through integrating artificial intelligence and machine learning, SRTA seeks to tackle the multifaceted challenges autonomous systems face, highlighting the need for adaptive, scalable, and secure solutions. Emphasizing a hierarchical approach to decision-making, the paper also highlights the critical role of redundancy in ensuring reliability and anticipates future advancements in RTA technologies. This paper reflects an ongoing effort to harmonize safety and efficiency within regulatory frameworks for autonomous robotics.



The paper delves into the significance of Secure Runtime Assurance (SRTA) for the operational integrity and safety of autonomous robotics groups, with a focus on drones. It presents a comprehensive view of how SRTA has evolved from traditional runtime assurance methods to address the dynamic and complex nature of autonomous systems. Through integrating artificial intelligence and machine learning, SRTA seeks to tackle the multifaceted challenges autonomous systems face, highlighting the need for adaptive, scalable, and secure solutions. Emphasizing a hierarchical approach to decision-making, the paper also highlights the critical role of redundancy in ensuring reliability and anticipates future advancements in RTA technologies. This paper reflects an ongoing effort to harmonize safety and efficiency within regulatory frameworks for autonomous robotics.



Stephen Cass: Hello and welcome to Fixing the Future, an IEEE Spectrum podcast where we look at concrete solutions to tough problems. I’m your host, Stephen Cass, a senior editor at IEEE Spectrum. And before I start, I just want to tell you that you can get the latest coverage of some of Spectrum’s most important beats, including AI, climate change, and robotics, by signing up for one of our free newsletters. Just go to spectrum.ieee.org/newsletters to subscribe. We’ve been covering the drone delivery company Zipline in Spectrum for several years, and I do encourage listeners to check out our great onsite reporting from Rwanda in 2019 when we visited one of Zipline’s dispatch centers for delivering vital medical supplies into rural areas. But now it’s 2024, and Zipline is expanding into commercial drone delivery in the United States, including into urban areas, and hitting some recent milestones. Here to talk about some of those milestones today, we have Keenan Wyrobek, Zipline’s co-founder and CTO. Keenan, welcome to the show.

Keenan Wyrobek: Great to be here. Thanks for having me.

Cass: So before we get into what’s going on with the United States, can you first catch us up on how things have been going on with Rwanda and the other African countries you’ve been operating in?

Wyrobek: Yeah, absolutely. So we’re now operating in eight countries, including here in the US. That includes a handful of countries in Africa, as well as Japan and Europe. So in Africa, it’s really exciting. So the scale is really impressive, basically. As we’ve been operating, started eight years ago with blood, then moved into vaccine delivery and delivering many other things in the healthcare space, as well as outside the healthcare space. We can talk a little bit about in things like animal husbandry and other things. The scale is really what’s exciting. We have a single distribution center there that now regularly flies more than the equivalent of once the equator of the Earth every day. And that’s just from one of a whole bunch of distribution centers. That’s where we are really with that operation today.

Cass: So could you talk a little bit about those non-medical systems? Because this was very much how we’d seen blood being parachuted down from these drones and reaching those distant centers. What other things are you delivering there?

Wyrobek: Yeah, absolutely. So start with blood, like you said, then vaccines. We’ve now done delivered well over 15 million vaccine doses, lots of other pharmaceutical use cases to hospitals and clinics, and more recently, patient home delivery for chronic care of things like hypertension, HIV-positive patients, and things like that. And then, yeah, moved into some really exciting use cases and things like animal husbandry. One that I’m personally really excited about is supporting these genetic diversity campaigns. It’s one of those things very unglamorous, but really impactful. One of the main sources of protein around the world is cow’s milk. And it turns out the difference between a non-genetically diverse cow and a genetically diverse cow can be 10x difference in milk production. And so one of the things we deliver is bull semen. We’re very good at the cold chain involved in that as we’ve mastered in vaccines and blood. And that’s just one of many things we’re doing in other spaces outside of healthcare directly.

Cass: Oh, fascinating. So turning now to the US, it seems like there’s been two big developments recently. One is you’re getting close to deploying Platform 2, which has some really fascinating tech that allows packages to be delivered very precisely by tether. And I do want to talk about that later. But first, I want to talk about a big milestone you had late last year. And this was something that goes by the very unlovely acronym of a BVLOS flight. Can you tell us what a BVLOS stands for and why that flight was such a big deal?

Wryobek: Yeah, “beyond visual line of sight.” And so that is basically, before this milestone last year, all drone deliveries, all drone operations in the US were done by people standing on the ground, looking at the sky, that line of sight. And that’s how basically we made sure that the drones were staying clear of aircraft. This is true of everybody. Now, this is important because in places like the United States, many aircraft don’t and aren’t required to carry a transponder, right? So transponders where they have a radio signal that they’re transmitting their location that our drones can listen to and use to maintain separation. And so the holy grail of basically scalable drone operations, of course, it’s physically impossible to have people standing around all the world staring at the sky, and is a sensing solution where you can sense those aircraft and avoid those aircraft. And this is something we’ve been working on for a long time and got the approval for late last year with the FAA, the first-ever use of sensors to detect and avoid for maintaining safety in the US airspace, which is just really, really exciting. That’s now been in operations in two distribution centers here, one in Utah and one in Arkansas ever since.

Cass: So could you just tell us a little bit about how that tech works? It just seems to be quite advanced to trust a drone to recognize, “Oh, that is an actual airplane that’s a Cessna that’s going to be here in about two minutes and is a real problem,” or, “No, it’s a hawk, which is just going about his business and I’m not going to ever come close to it at all because it’s so far away.

Wryobek: Yeah, this is really fun to talk about. So just to start with what we’re not doing, because most people expect us to use either a radar for this or cameras for this. And basically, those don’t work. And the radar, you would need such a heavy radar system to see 360 degrees all the way around your drone. And this is really important because two things to kind of plan in your mind. One is we’re not talking about autonomous driving where cars are close together. Aircraft never want to be as close together as cars are on a road, right? We’re talking about maintaining hundreds of meters of separation, and so you sense it a long distance. And drones don’t have right of way. So what that means is even if a plane’s coming up behind the drone, you got to sense that plane and get out of the way. And so to have enough radar on your drone that you can actually see far enough to maintain that separation in every direction, you’re talking about something that weighs many times the weight of a drone and it just doesn’t physically close. And so we started there because that’s sort of where we assumed and many people assume that’s the place to start. Then looked at cameras. Cameras have lots of drawbacks. And fundamentally, you can sort of-- we’ve all had this, you taken your phone and tried to take a picture of an airplane and you look at the picture, you can’t see the airplane. Yeah. It takes so many pixels of perfectly clean lenses to see an aircraft at a kilometer or two away that it really just is not practical or robust enough. And that’s when we went back to the drawing board and it ended up where we ended up, which is using an array of microphones to listen for aircraft, which works very well at very long distances to then maintain separation from those other aircraft.

Cass: So yeah, let’s talk about Platform 2 a little bit more because I should first explain for listeners who maybe aren’t familiar with Zipline that these are not the kind of the little purely sort of helicopter-like drones. These are these fixed wing with sort of loiter capability and hovering capabilities. So they’re not like your Mavic drones and so on. These have a capacity then for long-distance flight, which is what it gives them.

Wyrobek: Yeah. And maybe to jump into Platform 2— maybe starting with Platform 1, what does it look like? So Platform 1 is what we’ve been operating around the world for years now. And this basically looks like a small airplane, right? In the industry referred to as a fixed-wing aircraft. And it’s fixed wing because to solve the problem of going from a metro area to surrounding countryside, really two things matter. Your range and long range and low cost. And a fixed-wing aircraft over something that can hover has something like an 800% advantage in range and cost. And that’s why we did fix wing because it actually works for our customers for their needs for that use case. Platform 2 is all about, how do you deliver to homes and in metro areas where you need an incredible amount of precision to deliver to nearly every home. And so Platform 2—we call our drone zips—our drone, it flies out to the delivery site. Instead of floating a package down to a customer like Platform 1 does, it hovers. Platform 2 hovers and lowers down what we call a droid. And so the droids on tether. The drone stays way up high, about 100 meters up high, and the drone lowers down. And the drone itself-- sorry, the droid itself, it lowers down, it can fly. Right? So you think of it as like the tether does the heavy lifting, but the droid has fans. So if it gets hit by a gust of wind or whatnot, it can still stay very precisely on track and come in and deliver it to a very small area, put the package down, and then be out of there seconds later.

Cass: So let me get this right. Platform 2 is kind of as a combo, fixed wing and rotor wing. It’s like a VTOL like that. I’m cheating here a little bit because my colleague Evan Ackerman has a great Q&A on the Spectrum website with you, some of your team members about the nitty-gritty of how that design was evolved. But first off, it’s like a little droid thing at the end of the tether. How much extra precision do all those fans and stuff give you?

Wyrobek: Oh, massive, right? We can come down and hit a target within a few centimeters of where we want to deliver, which means we can deliver. Like if you have a small back porch, which is really common, right, in a lot of urban areas to have a small back porch or a small place on your roof or something like that, we can still just deliver as long as we have a few feet of open space. And that’s really powerful for being able to serve our customers. And a lot of people think of Platform 2 as like, “Hey, it’s a slightly better way of doing maybe a DoorDash-style operation, people in cars driving around.” And to be clear, it’s not slightly better. It’s massively better, much faster, more environmentally friendly. But we have many contracts for Platform 2 in the health space with US Health System Partners and Health Systems around the world. And what’s powerful about these customers in terms of their needs is they really need to serve all of their customers. And this is where a lot of our sort of-- this is where our engineering effort goes is how do you make a system that doesn’t just kind of work for some folks, and they can use it if they want to, but a health system is like, “No, I want this to work for everybody in my health network.” And so how do we get to that near 100 percent serviceability? And that’s what this droid really enables us to do. And of course, it has all these other magic benefits too. It makes some of the hardest design problems in this space much, much easier. The safety problem gets much easier by keeping the drone way up high.

Cass: Yeah, how high is Platform 2 hovering when it’s doing its deliveries?

Wyrobek: About 100 meters, so 300 plus feet, right? We’re talking about high up as a football field is long. And so it’s way up there. And it also helps with things like noise, right? We don’t want to live in a future where drones are all around us sounding like swarms of insects. We want drones to make no noise. We want them to just melt into the background. And so it makes that kind of problem much easier as well. And then, of course, the droid gets other benefits where for many products, we don’t need any packaging at all. We can just deliver the product right onto a table in your porch. And not just from a cost perspective, but again, from— we’re all familiar with the nightmare of packaging from deliveries we get. Eliminating packaging just has to be our future. And we’re really excited to advance that future.

Cass: From Evan’s Q&A, I know that a lot of effort went into making the droid element look rather adorable. Why was that so important?

Wryobek: Yeah, I like to describe it as sort of a cross between three things, if you kind of picture this, like a miniature little fan boat, right, because it has some fan, a big fan on the back, looks like a little fan boat, combined with sort of a baby seal, combined with a toaster. It sort of has that look to it. And making it adorable, there’s a bunch of sort of human things that matter, right? I want this to be something that when my grandmother, who’s not a tech-savvy, gets these deliveries, it’s approachable. It doesn’t come off as sort of scary. And when you make something cute, not only does it feel approachable, but it also forces you to get the details right so it is approachable, right? The rounded corners, right? This sounds really benign, but a lot of robots, it turns out if you bump into them, they scratch you. And we want you to be able to bump into this droid, and this is no big deal. And so getting the surfaces right, getting them— the surface is made sort of like a helmet foam. If you can picture that, right? The kind of thing you wouldn’t be afraid to touch if it touched you. And so getting it both to be something that feels safe, but is something that actually is safe to be around, those two things just matter a lot. Because again, we’re not designing this for some piloty kind of low-volume thing. Our customers want this in phenomenal volume. And so we really want this to be something that we’re all comfortable around.

Cass: Yeah, and one thing I want to pull out from that Q&A as well is it was an interesting note, because you mentioned it has three fans, but they’re rather unobtrusive. And the original design, you had two big fans on the sides, which was very great for maneuverability. But you had to get rid of those and come up with a three-fan design. And maybe you can explain why that was so.

Wryobek: Yeah, that’s a great detail. So the original design, the picture, it was like, imagine the package in the middle, and then kind of on either side of the package, two fans. So when you looked at it, it kind of looked like— I don’t know. It kind of looked like the package had big mouse ears or something. And when you looked at it, everybody had the same reaction. You kind of took this big step back. It was like, “Whoa, there’s this big thing coming down into my yard.” And when you’re doing this kind of user testing, we always joke, you don’t need to bring users in if it already makes you take a step back. And this is one of those things where like, “That’s just not good enough, right, to even start with that kind of refined design.” But when we got the sort of profile of it smaller, the way we think about it from a design experiment perspective is we want to deliver a large package. So basically, the droid needs to be as sucked down as small additional volume around that package as possible. So we spent a lot of time figuring out, “Okay, how do you do that sort of physically and aesthetically in a way that also gets that amazing performance, right? Because when I say performance, what I’m talking about is we still need it to work when the winds are blowing really hard outside and still can deliver precisely. And so it has to have a lot of aero performance to do that and still deliver precisely in essentially all weather conditions.

Cass: So I guess I just want to ask you then is, what kind of weight and volume are you able to deliver with this level of precision?

Wryobek: Yeah, yeah. So we’ll be working our way up to eight pounds. I say working our way up because that’s part of, once you launch a product like this, there’s refinement you can do overtime on many layers, but eight pounds, which was driven off, again, these health use cases. So it does basically 100 percent of what our health partners need to do. And it turns out it’s, nearly 100 percent of what we want to do in meal delivery. And even in the goods sector, I’m impressed by the percentage of goods we can deliver. One of our partners we work with, we can deliver over 80 percent of what they have in their big box store. And yeah, it’s wildly exceeding expectations on nearly every axis there. And volume, it’s big. It’s bigger than a shoebox. I don’t have a great-- I’m trying to think of a good reference to kind of bring it to life. But it looks like a small cooler basically inside. And it can comfortably fit a meal for four to give you a sense of the amount of food you can fit in there. Yeah.

Cass: So we’ve seen this history of Zipline in rural areas, and now we’re talking about expanding operations in more urban areas, but just how urban? I don’t imagine that we’ll see the zip lines of zooming around, say, the very hemmed-in streets, say, here in Midtown Manhattan. So what level of urban are we talking about?

Wryobek: Yeah, so the way we talk about it internally in our design process is basically we call three-story sprawl. Manhattan is the place where when we think of New York, we’re not talking about Manhattan, but most of the rest of New York, we are talking about it, right? Like the Bronx, things like that. We just have this sort of three stories forever. And that’s a lot of the world out here in California, that’s most of San Francisco. I think it’s something like 98 percent of San Francisco is that. If you’ve ever been to places like India and stuff like that, the cities, it’s just sort of this three stories going for a really long way. And that’s what we’re really focused on. And that’s also where we provide that incredible value because that’s also matches where the hardest traffic situations and things like that can make any other sort of terrestrial on-demand delivery be phenomenally late.

Cass: Well, no, I live out in Queens, so I agree there’s not much skyscrapers out there. Although there are quite a few trees and so on, but at the same time, there’s usually some sort of sidewalk availability. So is that kind of what you’re hoping to get into?

Wyrobek: Exactly. So as long as you’ve got a porch with a view of the sky or an alley with a view of the sky, it can be literally just a few feet, we can get in there, make a delivery, and be on our way.

Cass: And so you’ve done this preliminary test with the FAA, the BVLOS test, and so on. How close do you think you are to, and you’re working with a lot of partners, to really seeing this become routine commercial operations?

Wyrobek: Yeah, yeah. So at relatively limited scale, our operations here in Utah and in Arkansas that are leveraging that FAA approval for beyond visual line-of-sight flight operations, that’s been all day, every day now since our approval last year. With Platform 2, we’re really excited. That’s coming later this year. We’re currently in the phase of basically massive-scale testing. So we now have our production hardware and we’re taking it through a massive ground testing campaign. So this picture dozens of thermal chambers and five chambers and things like that just running to really both validate that we have the reliability we need and flush out any issues that we might have missed so we can address that difference between what we call the theoretical reliability and the actual reliability. And that’s running in parallel to a massive flight test campaign. Same idea, right? We’re slowly ramping up the flight volume as we fly into heavier conditions really to make sure we know the limits of the system. We know its actual reliability and true scaled operations so we can get the confidence that it’s ready to operate for people.

Cass: So you’ve got Platform 2. What’s kind of next on your technology roadmap for any possible platform three?

Wyrobek: Oh, great question. Yeah, I can’t comment on platform three at this time, but. And I will also say, Zipline is pouring our heart into Platform 2 right now. Getting Platform 2 ready for this-- the way I like to talk about this internally is today, we fly about four times the equator of the Earth in our operations on average. And that’s a few thousand flights per day. But the demand we have is for more like millions of flights per day, if not beyond. And so on the log scale, right, we’re halfway there. Three hours of magnitude down, three more zeros to come. And the level of testing, the level of systems engineering, the level of refinement required to do that is a lot. And there’s so many systems from weather forecasting to our onboard autonomy and our fleet management systems. And so to highlight one team, our system test team run by this really impressive individual named Juan Albanell, this team has taken us from where we were two years ago, where we had shown the concept at a very prototype stage of this delivery experience, and we’ve done the first order math kind of on the architecture and things like that through the iterations in test to actually make sure we had a drone that could actually fly in all these weather conditions with all the robustness and tolerance required to actually go to this global scale that Platform 2 is targeting.

Cass: Well, that’s fantastic. Well, I think there’s a lot more to talk about to come up in the future, and we look forward to talking with Zipline again. But for today, I’m afraid we’re going to have to leave it there. But it was really great to have you on the show, Keenan. Thank you so much.

Wyrobek: Cool. Absolutely, Stephen. It was a pleasure to speak with you.

Cass: So today on Fixing the Future, we were talking with Zipline’s Keenan Wyrobek about the progress of commercial drone deliveries. For IEEE Spectrum, I’m Stephen Cass, and I hope you’ll join us next time.



Stephen Cass: Hello and welcome to Fixing the Future, an IEEE Spectrum podcast where we look at concrete solutions to tough problems. I’m your host, Stephen Cass, a senior editor at IEEE Spectrum. And before I start, I just want to tell you that you can get the latest coverage of some of Spectrum’s most important beats, including AI, climate change, and robotics, by signing up for one of our free newsletters. Just go to spectrum.ieee.org/newsletters to subscribe. We’ve been covering the drone delivery company Zipline in Spectrum for several years, and I do encourage listeners to check out our great onsite reporting from Rwanda in 2019 when we visited one of Zipline’s dispatch centers for delivering vital medical supplies into rural areas. But now it’s 2024, and Zipline is expanding into commercial drone delivery in the United States, including into urban areas, and hitting some recent milestones. Here to talk about some of those milestones today, we have Keenan Wyrobek, Zipline’s co-founder and CTO. Keenan, welcome to the show.

Keenan Wyrobek: Great to be here. Thanks for having me.

Cass: So before we get into what’s going on with the United States, can you first catch us up on how things have been going on with Rwanda and the other African countries you’ve been operating in?

Wyrobek: Yeah, absolutely. So we’re now operating in eight countries, including here in the US. That includes a handful of countries in Africa, as well as Japan and Europe. So in Africa, it’s really exciting. So the scale is really impressive, basically. As we’ve been operating, started eight years ago with blood, then moved into vaccine delivery and delivering many other things in the healthcare space, as well as outside the healthcare space. We can talk a little bit about in things like animal husbandry and other things. The scale is really what’s exciting. We have a single distribution center there that now regularly flies more than the equivalent of once the equator of the Earth every day. And that’s just from one of a whole bunch of distribution centers. That’s where we are really with that operation today.

Cass: So could you talk a little bit about those non-medical systems? Because this was very much how we’d seen blood being parachuted down from these drones and reaching those distant centers. What other things are you delivering there?

Wyrobek: Yeah, absolutely. So start with blood, like you said, then vaccines. We’ve now done delivered well over 15 million vaccine doses, lots of other pharmaceutical use cases to hospitals and clinics, and more recently, patient home delivery for chronic care of things like hypertension, HIV-positive patients, and things like that. And then, yeah, moved into some really exciting use cases and things like animal husbandry. One that I’m personally really excited about is supporting these genetic diversity campaigns. It’s one of those things very unglamorous, but really impactful. One of the main sources of protein around the world is cow’s milk. And it turns out the difference between a non-genetically diverse cow and a genetically diverse cow can be 10x difference in milk production. And so one of the things we deliver is bull semen. We’re very good at the cold chain involved in that as we’ve mastered in vaccines and blood. And that’s just one of many things we’re doing in other spaces outside of healthcare directly.

Cass: Oh, fascinating. So turning now to the US, it seems like there’s been two big developments recently. One is you’re getting close to deploying Platform 2, which has some really fascinating tech that allows packages to be delivered very precisely by tether. And I do want to talk about that later. But first, I want to talk about a big milestone you had late last year. And this was something that goes by the very unlovely acronym of a BVLOS flight. Can you tell us what a BVLOS stands for and why that flight was such a big deal?

Wryobek: Yeah, “beyond visual line of sight.” And so that is basically, before this milestone last year, all drone deliveries, all drone operations in the US were done by people standing on the ground, looking at the sky, that line of sight. And that’s how basically we made sure that the drones were staying clear of aircraft. This is true of everybody. Now, this is important because in places like the United States, many aircraft don’t and aren’t required to carry a transponder, right? So transponders where they have a radio signal that they’re transmitting their location that our drones can listen to and use to maintain separation. And so the holy grail of basically scalable drone operations, of course, it’s physically impossible to have people standing around all the world staring at the sky, and is a sensing solution where you can sense those aircraft and avoid those aircraft. And this is something we’ve been working on for a long time and got the approval for late last year with the FAA, the first-ever use of sensors to detect and avoid for maintaining safety in the US airspace, which is just really, really exciting. That’s now been in operations in two distribution centers here, one in Utah and one in Arkansas ever since.

Cass: So could you just tell us a little bit about how that tech works? It just seems to be quite advanced to trust a drone to recognize, “Oh, that is an actual airplane that’s a Cessna that’s going to be here in about two minutes and is a real problem,” or, “No, it’s a hawk, which is just going about his business and I’m not going to ever come close to it at all because it’s so far away.

Wryobek: Yeah, this is really fun to talk about. So just to start with what we’re not doing, because most people expect us to use either a radar for this or cameras for this. And basically, those don’t work. And the radar, you would need such a heavy radar system to see 360 degrees all the way around your drone. And this is really important because two things to kind of plan in your mind. One is we’re not talking about autonomous driving where cars are close together. Aircraft never want to be as close together as cars are on a road, right? We’re talking about maintaining hundreds of meters of separation, and so you sense it a long distance. And drones don’t have right of way. So what that means is even if a plane’s coming up behind the drone, you got to sense that plane and get out of the way. And so to have enough radar on your drone that you can actually see far enough to maintain that separation in every direction, you’re talking about something that weighs many times the weight of a drone and it just doesn’t physically close. And so we started there because that’s sort of where we assumed and many people assume that’s the place to start. Then looked at cameras. Cameras have lots of drawbacks. And fundamentally, you can sort of-- we’ve all had this, you taken your phone and tried to take a picture of an airplane and you look at the picture, you can’t see the airplane. Yeah. It takes so many pixels of perfectly clean lenses to see an aircraft at a kilometer or two away that it really just is not practical or robust enough. And that’s when we went back to the drawing board and it ended up where we ended up, which is using an array of microphones to listen for aircraft, which works very well at very long distances to then maintain separation from those other aircraft.

Cass: So yeah, let’s talk about Platform 2 a little bit more because I should first explain for listeners who maybe aren’t familiar with Zipline that these are not the kind of the little purely sort of helicopter-like drones. These are these fixed wing with sort of loiter capability and hovering capabilities. So they’re not like your Mavic drones and so on. These have a capacity then for long-distance flight, which is what it gives them.

Wyrobek: Yeah. And maybe to jump into Platform 2— maybe starting with Platform 1, what does it look like? So Platform 1 is what we’ve been operating around the world for years now. And this basically looks like a small airplane, right? In the industry referred to as a fixed-wing aircraft. And it’s fixed wing because to solve the problem of going from a metro area to surrounding countryside, really two things matter. Your range and long range and low cost. And a fixed-wing aircraft over something that can hover has something like an 800% advantage in range and cost. And that’s why we did fix wing because it actually works for our customers for their needs for that use case. Platform 2 is all about, how do you deliver to homes and in metro areas where you need an incredible amount of precision to deliver to nearly every home. And so Platform 2—we call our drone zips—our drone, it flies out to the delivery site. Instead of floating a package down to a customer like Platform 1 does, it hovers. Platform 2 hovers and lowers down what we call a droid. And so the droids on tether. The drone stays way up high, about 100 meters up high, and the drone lowers down. And the drone itself-- sorry, the droid itself, it lowers down, it can fly. Right? So you think of it as like the tether does the heavy lifting, but the droid has fans. So if it gets hit by a gust of wind or whatnot, it can still stay very precisely on track and come in and deliver it to a very small area, put the package down, and then be out of there seconds later.

Cass: So let me get this right. Platform 2 is kind of as a combo, fixed wing and rotor wing. It’s like a VTOL like that. I’m cheating here a little bit because my colleague Evan Ackerman has a great Q&A on the Spectrum website with you, some of your team members about the nitty-gritty of how that design was evolved. But first off, it’s like a little droid thing at the end of the tether. How much extra precision do all those fans and stuff give you?

Wyrobek: Oh, massive, right? We can come down and hit a target within a few centimeters of where we want to deliver, which means we can deliver. Like if you have a small back porch, which is really common, right, in a lot of urban areas to have a small back porch or a small place on your roof or something like that, we can still just deliver as long as we have a few feet of open space. And that’s really powerful for being able to serve our customers. And a lot of people think of Platform 2 as like, “Hey, it’s a slightly better way of doing maybe a DoorDash-style operation, people in cars driving around.” And to be clear, it’s not slightly better. It’s massively better, much faster, more environmentally friendly. But we have many contracts for Platform 2 in the health space with US Health System Partners and Health Systems around the world. And what’s powerful about these customers in terms of their needs is they really need to serve all of their customers. And this is where a lot of our sort of-- this is where our engineering effort goes is how do you make a system that doesn’t just kind of work for some folks, and they can use it if they want to, but a health system is like, “No, I want this to work for everybody in my health network.” And so how do we get to that near 100 percent serviceability? And that’s what this droid really enables us to do. And of course, it has all these other magic benefits too. It makes some of the hardest design problems in this space much, much easier. The safety problem gets much easier by keeping the drone way up high.

Cass: Yeah, how high is Platform 2 hovering when it’s doing its deliveries?

Wyrobek: About 100 meters, so 300 plus feet, right? We’re talking about high up as a football field is long. And so it’s way up there. And it also helps with things like noise, right? We don’t want to live in a future where drones are all around us sounding like swarms of insects. We want drones to make no noise. We want them to just melt into the background. And so it makes that kind of problem much easier as well. And then, of course, the droid gets other benefits where for many products, we don’t need any packaging at all. We can just deliver the product right onto a table in your porch. And not just from a cost perspective, but again, from— we’re all familiar with the nightmare of packaging from deliveries we get. Eliminating packaging just has to be our future. And we’re really excited to advance that future.

Cass: From Evan’s Q&A, I know that a lot of effort went into making the droid element look rather adorable. Why was that so important?

Wryobek: Yeah, I like to describe it as sort of a cross between three things, if you kind of picture this, like a miniature little fan boat, right, because it has some fan, a big fan on the back, looks like a little fan boat, combined with sort of a baby seal, combined with a toaster. It sort of has that look to it. And making it adorable, there’s a bunch of sort of human things that matter, right? I want this to be something that when my grandmother, who’s not a tech-savvy, gets these deliveries, it’s approachable. It doesn’t come off as sort of scary. And when you make something cute, not only does it feel approachable, but it also forces you to get the details right so it is approachable, right? The rounded corners, right? This sounds really benign, but a lot of robots, it turns out if you bump into them, they scratch you. And we want you to be able to bump into this droid, and this is no big deal. And so getting the surfaces right, getting them— the surface is made sort of like a helmet foam. If you can picture that, right? The kind of thing you wouldn’t be afraid to touch if it touched you. And so getting it both to be something that feels safe, but is something that actually is safe to be around, those two things just matter a lot. Because again, we’re not designing this for some piloty kind of low-volume thing. Our customers want this in phenomenal volume. And so we really want this to be something that we’re all comfortable around.

Cass: Yeah, and one thing I want to pull out from that Q&A as well is it was an interesting note, because you mentioned it has three fans, but they’re rather unobtrusive. And the original design, you had two big fans on the sides, which was very great for maneuverability. But you had to get rid of those and come up with a three-fan design. And maybe you can explain why that was so.

Wryobek: Yeah, that’s a great detail. So the original design, the picture, it was like, imagine the package in the middle, and then kind of on either side of the package, two fans. So when you looked at it, it kind of looked like— I don’t know. It kind of looked like the package had big mouse ears or something. And when you looked at it, everybody had the same reaction. You kind of took this big step back. It was like, “Whoa, there’s this big thing coming down into my yard.” And when you’re doing this kind of user testing, we always joke, you don’t need to bring users in if it already makes you take a step back. And this is one of those things where like, “That’s just not good enough, right, to even start with that kind of refined design.” But when we got the sort of profile of it smaller, the way we think about it from a design experiment perspective is we want to deliver a large package. So basically, the droid needs to be as sucked down as small additional volume around that package as possible. So we spent a lot of time figuring out, “Okay, how do you do that sort of physically and aesthetically in a way that also gets that amazing performance, right? Because when I say performance, what I’m talking about is we still need it to work when the winds are blowing really hard outside and still can deliver precisely. And so it has to have a lot of aero performance to do that and still deliver precisely in essentially all weather conditions.

Cass: So I guess I just want to ask you then is, what kind of weight and volume are you able to deliver with this level of precision?

Wryobek: Yeah, yeah. So we’ll be working our way up to eight pounds. I say working our way up because that’s part of, once you launch a product like this, there’s refinement you can do overtime on many layers, but eight pounds, which was driven off, again, these health use cases. So it does basically 100 percent of what our health partners need to do. And it turns out it’s, nearly 100 percent of what we want to do in meal delivery. And even in the goods sector, I’m impressed by the percentage of goods we can deliver. One of our partners we work with, we can deliver over 80 percent of what they have in their big box store. And yeah, it’s wildly exceeding expectations on nearly every axis there. And volume, it’s big. It’s bigger than a shoebox. I don’t have a great-- I’m trying to think of a good reference to kind of bring it to life. But it looks like a small cooler basically inside. And it can comfortably fit a meal for four to give you a sense of the amount of food you can fit in there. Yeah.

Cass: So we’ve seen this history of Zipline in rural areas, and now we’re talking about expanding operations in more urban areas, but just how urban? I don’t imagine that we’ll see the zip lines of zooming around, say, the very hemmed-in streets, say, here in Midtown Manhattan. So what level of urban are we talking about?

Wryobek: Yeah, so the way we talk about it internally in our design process is basically we call three-story sprawl. Manhattan is the place where when we think of New York, we’re not talking about Manhattan, but most of the rest of New York, we are talking about it, right? Like the Bronx, things like that. We just have this sort of three stories forever. And that’s a lot of the world out here in California, that’s most of San Francisco. I think it’s something like 98 percent of San Francisco is that. If you’ve ever been to places like India and stuff like that, the cities, it’s just sort of this three stories going for a really long way. And that’s what we’re really focused on. And that’s also where we provide that incredible value because that’s also matches where the hardest traffic situations and things like that can make any other sort of terrestrial on-demand delivery be phenomenally late.

Cass: Well, no, I live out in Queens, so I agree there’s not much skyscrapers out there. Although there are quite a few trees and so on, but at the same time, there’s usually some sort of sidewalk availability. So is that kind of what you’re hoping to get into?

Wyrobek: Exactly. So as long as you’ve got a porch with a view of the sky or an alley with a view of the sky, it can be literally just a few feet, we can get in there, make a delivery, and be on our way.

Cass: And so you’ve done this preliminary test with the FAA, the BVLOS test, and so on. How close do you think you are to, and you’re working with a lot of partners, to really seeing this become routine commercial operations?

Wyrobek: Yeah, yeah. So at relatively limited scale, our operations here in Utah and in Arkansas that are leveraging that FAA approval for beyond visual line-of-sight flight operations, that’s been all day, every day now since our approval last year. With Platform 2, we’re really excited. That’s coming later this year. We’re currently in the phase of basically massive-scale testing. So we now have our production hardware and we’re taking it through a massive ground testing campaign. So this picture dozens of thermal chambers and five chambers and things like that just running to really both validate that we have the reliability we need and flush out any issues that we might have missed so we can address that difference between what we call the theoretical reliability and the actual reliability. And that’s running in parallel to a massive flight test campaign. Same idea, right? We’re slowly ramping up the flight volume as we fly into heavier conditions really to make sure we know the limits of the system. We know its actual reliability and true scaled operations so we can get the confidence that it’s ready to operate for people.

Cass: So you’ve got Platform 2. What’s kind of next on your technology roadmap for any possible platform three?

Wyrobek: Oh, great question. Yeah, I can’t comment on platform three at this time, but. And I will also say, Zipline is pouring our heart into Platform 2 right now. Getting Platform 2 ready for this-- the way I like to talk about this internally is today, we fly about four times the equator of the Earth in our operations on average. And that’s a few thousand flights per day. But the demand we have is for more like millions of flights per day, if not beyond. And so on the log scale, right, we’re halfway there. Three hours of magnitude down, three more zeros to come. And the level of testing, the level of systems engineering, the level of refinement required to do that is a lot. And there’s so many systems from weather forecasting to our onboard autonomy and our fleet management systems. And so to highlight one team, our system test team run by this really impressive individual named Juan Albanell, this team has taken us from where we were two years ago, where we had shown the concept at a very prototype stage of this delivery experience, and we’ve done the first order math kind of on the architecture and things like that through the iterations in test to actually make sure we had a drone that could actually fly in all these weather conditions with all the robustness and tolerance required to actually go to this global scale that Platform 2 is targeting.

Cass: Well, that’s fantastic. Well, I think there’s a lot more to talk about to come up in the future, and we look forward to talking with Zipline again. But for today, I’m afraid we’re going to have to leave it there. But it was really great to have you on the show, Keenan. Thank you so much.

Wyrobek: Cool. Absolutely, Stephen. It was a pleasure to speak with you.

Cass: So today on Fixing the Future, we were talking with Zipline’s Keenan Wyrobek about the progress of commercial drone deliveries. For IEEE Spectrum, I’m Stephen Cass, and I hope you’ll join us next time.



Boston Dynamics has just introduced a new Atlas humanoid robot, replacing the legendary hydraulic Atlas and intended to be a commercial product. This is huge news from the company that has spent the last decade building the most dynamic humanoids that the world has ever seen, and if you haven’t read our article about the announcement (and seen the video!), you should do that right now.

We’ve had about a decade of pent-up questions about an all-electric productized version of Atlas, and we were lucky enough to speak with Boston Dynamics CEO Robert Playter to learn more about where this robot came from and how it’s going to make commercial humanoid robots (finally) happen.

Robert Playter was the Vice President of Engineering at Boston Dynamics starting in 1994, which I’m pretty sure was back when Boston Dynamics still intended to be a modeling and simulation company rather than a robotics company. Playter became the CEO in 2019, helping the company make the difficult transition from R&D to commercial products with Spot, Stretch, and now (or very soon) Atlas.

We talked with Playter about what the heck took Boston Dynamics so long to make this robot, what the vision is for Atlas as a product, all that extreme flexibility, and what comes next.

Robert Playter on:

IEEE Spectrum: So what’s going on?

Robert Playter: Boston Dynamics has built an all-electric humanoid. It’s our newest generation of what’s been an almost 15-year effort in developing humanoids. We’re going to launch it as a product, targeting industrial applications, logistics, and places that are much more diverse than where you see Stretch—heavy objects with complex geometry, probably in manufacturing type environments. We’ve built our first robot, and we believe that’s really going to set the bar for the next generation of capabilities for this whole industry.

What took you so long?!

Playter: Well, we wanted to convince ourselves that we knew how to make a humanoid product that can handle a great diversity of tasks—much more so than our previous generations of robots—including at-pace bimanual manipulation of the types of heavy objects with complex geometry that we expect to find in industry. We also really wanted to understand the use cases, so we’ve done a lot of background work on making sure that we see where we can apply these robots fruitfully in industry.

We’ve obviously been working on this machine for a while, as we’ve been doing parallel development with our legacy Atlas. You’ve probably seen some of the videos of Atlas moving struts around—that’s the technical part of proving to ourselves that we can make this work. And then really designing a next generation machine that’s going to be an order of magnitude better than anything the world has seen.

“We’re not anxious to just show some whiz-bang tech, and we didn’t really want to indicate our intent to go here until we were convinced that there is a path to a product.” Robert Playter, Boston Dynamics

With Spot, it felt like Boston Dynamics developed the product first, without having a specific use case in mind: you put the robot out there and let people discover what it was good for. Is your approach different with Atlas?

Playter: You’re absolutely right. Spot was a technology looking for a product, and it’s taken time for us to really figure out the product market fit that we have in industrial inspection. But the challenge of that experience has left us wiser about really identifying the target applications before you say you’re going to build these things at scale.

Stretch is very different, because it had a clear target market. Atlas is going to be more like Stretch, although it’s going to be way more than a single task robot, which is kind of what Stretch is. Convincing ourselves that we could really generalize with Atlas has taken a little bit of time. This is going to be our third product in about four years. We’ve learned so much, and the world is different from that experience.

[back to top]

Is your vision for Atlas one of a general purpose robot?

Playter: It definitely needs to be a multi-use case robot. I believe that because I don’t think there’s very many examples where a single repetitive task is going to warrant these complex robots. I also think, though, that the practical matter is that you’re going to have to focus on a class of use cases, and really making them useful for the end customer. The lesson we’ve learned with both Spot and Stretch is that it’s critical to get out there and actually understand what makes this robot valuable to customers while making sure you’re building that into your development cycle. And if you can start that before you’ve even launched the product, then you’ll be better off.

[back to top]

How does thinking of this new Atlas as a product rather than a research platform change things?

Playter: I think the research that we’ve done over the past 10 or 15 years has been essential to making a humanoid useful in the first place. We focused on dynamic balancing and mobility and being able to pick something up and still maintain that mobility—those were research topics of the past that we’ve now figured out how to manage and are essential, I think, to doing useful work. There’s still a lot of work to be done on generality, so that humanoids can pick up any one of a thousand different parts and deal with them in a reasonable way. That level of generality hasn’t been proven yet; we think there’s promise, and that AI will be one of the tools that helps solve that. And there’s still a lot of product prototyping and iteration that will come out before we start building massive numbers of these things and shipping them to customers.

“This robot will be stronger at most of its joints than a person, and even an elite athlete, and will have a range of motion that exceeds anything a person can ever do.” —Robert Playter, Boston Dynamics

For a long time, it seemed like hydraulics were the best way of producing powerful dynamic motions for robots like Atlas. Has that now changed?

Playter: We first experimented with that with the launch of Spot. We had the same issue years ago, and discovered that we could build powerful lightweight electric motors that had the same kind of responsiveness and strength, or let’s say sufficient responsiveness and strength, to really make that work. We’ve designed an even newer set of really compact actuators into our electric Atlas, which pack the strength of essentially an elite human athlete into these tiny packages that make an electric humanoid feasible for us. So, this robot will be stronger at most of its joints than a person, and even an elite athlete, and will have a range of motion that exceeds anything a person can ever do. We’ve also compared the strength of our new electric Atlas to our hydraulic Atlas, and the electric Atlas is stronger.

[back to top]

In the context of Atlas’ range of motion, that introductory video was slightly uncomfortable to watch, which I’m sure was deliberate. Why introduce the new Atlas in that way?

Playter: These high range of motion actuators are going to enable a unique set of movements that ultimately will let the robot be very efficient. Imagine being able to turn around without having to take a bunch of steps to turn your whole body instead. The motions we showed [in the video] are ones where our engineers were like, “hey, with these joints, we could get up like this!” And it just wasn’t something we had that really thought about before. This flexibility creates a palette that you can design new stuff on, and we’re already having fun with it and we decided we wanted to share that excitement with the world.

[back to top]

“Everybody will buy one robot—we learned that with Spot. But they won’t start by buying fleets, and you don’t have a business until you can sell multiple robots to the same customer.” Robert Playter, Boston Dynamics

This does seem like a way of making Atlas more efficient, but I’ve heard from other folks working on humanoids that it’s important for robots to move in familiar and predictable ways for people to be comfortable working around them. What’s your perspective on that?

Playter: I do think that people are going to have to become familiar with our robot; I don’t think that means limiting yourself to human motions. I believe that ultimately, if your robot is stronger or more flexible, it will be able to do things that humans can’t do, or don’t want to do.

One of the real challenges of making a product useful is that you’ve got to have sufficient productivity to satisfy a customer. If you’re slow, that’s hard. We learned that with Stretch. We had two generations of Stretch, and the first generation did not have a joint that let it pivot 180 degrees, so it had to ponderously turn around between picking up a box and dropping it off. That was a killer. And so we decided “nope, gotta have that rotational joint.” It lets Stretch be so much faster and more efficient. At the end of the day, that’s what counts. And people will get used to it.

What can you tell me about the head?

Boston Dynamics CEO Robert Playter said the head on the new Atlas robot has been designed not to mimic the human form but rather “to project something else: a friendly place to look to gain some understanding about the intent of the robot.”Boston Dynamics

Playter: The old Atlas did not have an articulated head. But having an articulated head gives you a tool that you can use to indicate intent, and there are integrated lights which will be able to communicate to users. Some of our original concepts had more of a [human] head shape, but for us they always looked a little bit threatening or dystopian somehow, and we wanted to get away from that. So we made a very purposeful decision about the head shape, and our explicit intent was for it not to be human-like. We’re trying to project something else: a friendly place to look to gain some understanding about the intent of the robot.

The design borrows from some friendly shapes that we’d seen in the past. For example, there’s the old Pixar lamp that everybody fell in love with decades ago, and that informed some of the design for us.

[back to top]

How do you think the decade(s) of experience working on humanoids as well as your experience commercializing Spot will benefit you when it comes to making Atlas into a product?

Playter: This is our third product, and one of the things we’ve learned is that it takes way more than some interesting technology to make a product work. You have to have a real use case, and you have to have real productivity around that use case that a customer cares about. Everybody will buy one robot—we learned that with Spot. But they won’t start by buying fleets, and you don’t have a business until you can sell multiple robots to the same customer. And you don’t get there without all this other stuff—the reliability, the service, the integration.

When we launched Spot as a product several years ago, it was really about transforming the whole company. We had to take on all of these new disciplines: manufacturing, service, measuring the quality and reliability of our robots and then building systems and tools to make them steadily better. That transformation is not easy, but the fact that we’ve successfully navigated through that as an organization means that we can easily bring that mindset and skill set to bear as a company. Honestly, that transition takes two or three years to get through, so all of the brand new startup companies out there who have a prototype of a humanoid working—they haven’t even begun that journey.

There’s also cost. Building something effectively at a reasonable cost so that you can sell it at a reasonable cost and ultimately make some money out of it, that’s not easy either. And frankly, without the support of Hyundai which is of course a world-class manufacturing expert, it would be really challenging to do it on our own.

So yeah, we’re much more sober about what it takes to succeed now. We’re not anxious to just show some whiz-bang tech, and we didn’t really want to indicate our intent to go here until we were convinced that there is a path to a product. And I think ultimately, that will win the day.

[back to top]

What will you be working on in the near future, and what will you be able to share?

Playter: We’ll start showing more of the dexterous manipulation on the new Atlas that we’ve already shown on our legacy Atlas. And we’re targeting proof of technology testing in factories at Hyundai Motor Group [HMG] as early as next year. HMG is really excited about this venture; they want to transform their manufacturing and they see Atlas as a big part of that, and so we’re going to get on that soon.

[back to top]

What do you think other robotics folks will find most exciting about the new Atlas?

Playter: Having a robot with so much power and agility packed into a relatively small and lightweight package. I’ve felt honored in the past that most of these other companies compare themselves to us. They say, “well, where are we on the Boston Dynamics bar?” I think we just raised the bar. And that’s ultimately good for the industry, right? People will go, “oh, wow, that’s possible!” And frankly, they’ll start chasing us as fast as they can—that’s what we’ve seen so far. I think it’ll end up pulling the whole industry forward.



Boston Dynamics has just introduced a new Atlas humanoid robot, replacing the legendary hydraulic Atlas and intended to be a commercial product. This is huge news from the company that has spent the last decade building the most dynamic humanoids that the world has ever seen, and if you haven’t read our article about the announcement (and seen the video!), you should do that right now.

We’ve had about a decade of pent-up questions about an all-electric productized version of Atlas, and we were lucky enough to speak with Boston Dynamics CEO Robert Playter to learn more about where this robot came from and how it’s going to make commercial humanoid robots (finally) happen.

Robert Playter was the Vice President of Engineering at Boston Dynamics starting in 1994, which I’m pretty sure was back when Boston Dynamics still intended to be a modeling and simulation company rather than a robotics company. Playter became the CEO in 2019, helping the company make the difficult transition from R&D to commercial products with Spot, Stretch, and now (or very soon) Atlas.

We talked with Playter about what the heck took Boston Dynamics so long to make this robot, what the vision is for Atlas as a product, all that extreme flexibility, and what comes next.

Robert Playter on:

IEEE Spectrum: So what’s going on?

Robert Playter: Boston Dynamics has built an all-electric humanoid. It’s our newest generation of what’s been an almost 15-year effort in developing humanoids. We’re going to launch it as a product, targeting industrial applications, logistics, and places that are much more diverse than where you see Stretch—heavy objects with complex geometry, probably in manufacturing type environments. We’ve built our first robot, and we believe that’s really going to set the bar for the next generation of capabilities for this whole industry.

What took you so long?!

Playter: Well, we wanted to convince ourselves that we knew how to make a humanoid product that can handle a great diversity of tasks—much more so than our previous generations of robots—including at-pace bimanual manipulation of the types of heavy objects with complex geometry that we expect to find in industry. We also really wanted to understand the use cases, so we’ve done a lot of background work on making sure that we see where we can apply these robots fruitfully in industry.

We’ve obviously been working on this machine for a while, as we’ve been doing parallel development with our legacy Atlas. You’ve probably seen some of the videos of Atlas moving struts around—that’s the technical part of proving to ourselves that we can make this work. And then really designing a next generation machine that’s going to be an order of magnitude better than anything the world has seen.

“We’re not anxious to just show some whiz-bang tech, and we didn’t really want to indicate our intent to go here until we were convinced that there is a path to a product.” Robert Playter, Boston Dynamics

With Spot, it felt like Boston Dynamics developed the product first, without having a specific use case in mind: you put the robot out there and let people discover what it was good for. Is your approach different with Atlas?

Playter: You’re absolutely right. Spot was a technology looking for a product, and it’s taken time for us to really figure out the product market fit that we have in industrial inspection. But the challenge of that experience has left us wiser about really identifying the target applications before you say you’re going to build these things at scale.

Stretch is very different, because it had a clear target market. Atlas is going to be more like Stretch, although it’s going to be way more than a single task robot, which is kind of what Stretch is. Convincing ourselves that we could really generalize with Atlas has taken a little bit of time. This is going to be our third product in about four years. We’ve learned so much, and the world is different from that experience.

[back to top]

Is your vision for Atlas one of a general purpose robot?

Playter: It definitely needs to be a multi-use case robot. I believe that because I don’t think there’s very many examples where a single repetitive task is going to warrant these complex robots. I also think, though, that the practical matter is that you’re going to have to focus on a class of use cases, and really making them useful for the end customer. The lesson we’ve learned with both Spot and Stretch is that it’s critical to get out there and actually understand what makes this robot valuable to customers while making sure you’re building that into your development cycle. And if you can start that before you’ve even launched the product, then you’ll be better off.

[back to top]

How does thinking of this new Atlas as a product rather than a research platform change things?

Playter: I think the research that we’ve done over the past 10 or 15 years has been essential to making a humanoid useful in the first place. We focused on dynamic balancing and mobility and being able to pick something up and still maintain that mobility—those were research topics of the past that we’ve now figured out how to manage and are essential, I think, to doing useful work. There’s still a lot of work to be done on generality, so that humanoids can pick up any one of a thousand different parts and deal with them in a reasonable way. That level of generality hasn’t been proven yet; we think there’s promise, and that AI will be one of the tools that helps solve that. And there’s still a lot of product prototyping and iteration that will come out before we start building massive numbers of these things and shipping them to customers.

“This robot will be stronger at most of its joints than a person, and even an elite athlete, and will have a range of motion that exceeds anything a person can ever do.” —Robert Playter, Boston Dynamics

For a long time, it seemed like hydraulics were the best way of producing powerful dynamic motions for robots like Atlas. Has that now changed?

Playter: We first experimented with that with the launch of Spot. We had the same issue years ago, and discovered that we could build powerful lightweight electric motors that had the same kind of responsiveness and strength, or let’s say sufficient responsiveness and strength, to really make that work. We’ve designed an even newer set of really compact actuators into our electric Atlas, which pack the strength of essentially an elite human athlete into these tiny packages that make an electric humanoid feasible for us. So, this robot will be stronger at most of its joints than a person, and even an elite athlete, and will have a range of motion that exceeds anything a person can ever do. We’ve also compared the strength of our new electric Atlas to our hydraulic Atlas, and the electric Atlas is stronger.

[back to top]

In the context of Atlas’ range of motion, that introductory video was slightly uncomfortable to watch, which I’m sure was deliberate. Why introduce the new Atlas in that way?

Playter: These high range of motion actuators are going to enable a unique set of movements that ultimately will let the robot be very efficient. Imagine being able to turn around without having to take a bunch of steps to turn your whole body instead. The motions we showed [in the video] are ones where our engineers were like, “hey, with these joints, we could get up like this!” And it just wasn’t something we had that really thought about before. This flexibility creates a palette that you can design new stuff on, and we’re already having fun with it and we decided we wanted to share that excitement with the world.

[back to top]

“Everybody will buy one robot—we learned that with Spot. But they won’t start by buying fleets, and you don’t have a business until you can sell multiple robots to the same customer.” Robert Playter, Boston Dynamics

This does seem like a way of making Atlas more efficient, but I’ve heard from other folks working on humanoids that it’s important for robots to move in familiar and predictable ways for people to be comfortable working around them. What’s your perspective on that?

Playter: I do think that people are going to have to become familiar with our robot; I don’t think that means limiting yourself to human motions. I believe that ultimately, if your robot is stronger or more flexible, it will be able to do things that humans can’t do, or don’t want to do.

One of the real challenges of making a product useful is that you’ve got to have sufficient productivity to satisfy a customer. If you’re slow, that’s hard. We learned that with Stretch. We had two generations of Stretch, and the first generation did not have a joint that let it pivot 180 degrees, so it had to ponderously turn around between picking up a box and dropping it off. That was a killer. And so we decided “nope, gotta have that rotational joint.” It lets Stretch be so much faster and more efficient. At the end of the day, that’s what counts. And people will get used to it.

What can you tell me about the head?

Boston Dynamics CEO Robert Playter said the head on the new Atlas robot has been designed not to mimic the human form but rather “to project something else: a friendly place to look to gain some understanding about the intent of the robot.”Boston Dynamics

Playter: The old Atlas did not have an articulated head. But having an articulated head gives you a tool that you can use to indicate intent, and there are integrated lights which will be able to communicate to users. Some of our original concepts had more of a [human] head shape, but for us they always looked a little bit threatening or dystopian somehow, and we wanted to get away from that. So we made a very purposeful decision about the head shape, and our explicit intent was for it not to be human-like. We’re trying to project something else: a friendly place to look to gain some understanding about the intent of the robot.

The design borrows from some friendly shapes that we’d seen in the past. For example, there’s the old Pixar lamp that everybody fell in love with decades ago, and that informed some of the design for us.

[back to top]

How do you think the decade(s) of experience working on humanoids as well as your experience commercializing Spot will benefit you when it comes to making Atlas into a product?

Playter: This is our third product, and one of the things we’ve learned is that it takes way more than some interesting technology to make a product work. You have to have a real use case, and you have to have real productivity around that use case that a customer cares about. Everybody will buy one robot—we learned that with Spot. But they won’t start by buying fleets, and you don’t have a business until you can sell multiple robots to the same customer. And you don’t get there without all this other stuff—the reliability, the service, the integration.

When we launched Spot as a product several years ago, it was really about transforming the whole company. We had to take on all of these new disciplines: manufacturing, service, measuring the quality and reliability of our robots and then building systems and tools to make them steadily better. That transformation is not easy, but the fact that we’ve successfully navigated through that as an organization means that we can easily bring that mindset and skill set to bear as a company. Honestly, that transition takes two or three years to get through, so all of the brand new startup companies out there who have a prototype of a humanoid working—they haven’t even begun that journey.

There’s also cost. Building something effectively at a reasonable cost so that you can sell it at a reasonable cost and ultimately make some money out of it, that’s not easy either. And frankly, without the support of Hyundai which is of course a world-class manufacturing expert, it would be really challenging to do it on our own.

So yeah, we’re much more sober about what it takes to succeed now. We’re not anxious to just show some whiz-bang tech, and we didn’t really want to indicate our intent to go here until we were convinced that there is a path to a product. And I think ultimately, that will win the day.

[back to top]

What will you be working on in the near future, and what will you be able to share?

Playter: We’ll start showing more of the dexterous manipulation on the new Atlas that we’ve already shown on our legacy Atlas. And we’re targeting proof of technology testing in factories at Hyundai Motor Group [HMG] as early as next year. HMG is really excited about this venture; they want to transform their manufacturing and they see Atlas as a big part of that, and so we’re going to get on that soon.

[back to top]

What do you think other robotics folks will find most exciting about the new Atlas?

Playter: Having a robot with so much power and agility packed into a relatively small and lightweight package. I’ve felt honored in the past that most of these other companies compare themselves to us. They say, “well, where are we on the Boston Dynamics bar?” I think we just raised the bar. And that’s ultimately good for the industry, right? People will go, “oh, wow, that’s possible!” And frankly, they’ll start chasing us as fast as they can—that’s what we’ve seen so far. I think it’ll end up pulling the whole industry forward.



Yesterday, Boston Dynamics bid farewell to the iconic Atlas humanoid robot. Or, the hydraulically-powered version of Atlas, anyway—if you read between the lines of the video description (or even just read the actual lines of the video description), it was pretty clear that although hydraulic Atlas was retiring, it wasn’t the end of the Atlas humanoid program at Boston Dynamics. In fact, Atlas is already back, and better than ever.

Today, Boston Dynamics is introducing a new version of Atlas that’s all-electric. It’s powered by batteries and electric actuators, no more messy hydraulics. It exceeds human performance in terms of both strength and flexibility. And for the first time, Boston Dynamics is calling this humanoid robot a product. We’ll take a look at everything that Boston Dynamics is announcing today, and have even more detail in this Q&A with Boston Dynamics CEO Robert Playter.

Boston Dynamics’ new electric humanoid has been simultaneously one of the worst and best kept secrets in robotics over the last year or so. What I mean is that it seemed obvious, or even inevitable, that Boston Dynamics would take the expertise in humanoids that it developed with Atlas and combine that with its experience productizing a fully electric system like Spot. But just because something seems inevitable doesn’t mean it actually is inevitable, and Boston Dynamics has done an admirable job of carrying on as normal while building a fully electric humanoid from scratch. And here it is:


It’s all new, it’s all electric, and some of those movements make me slightly uncomfortable (we’ll get into that in a bit). The blog post accompanying the video is sparse on technical detail, but let’s go through the most interesting parts:

A decade ago, we were one of the only companies putting real R&D effort into humanoid robots. Now the landscape in the robotics industry is very different.

In 2010, we took a look at all the humanoid robots then in existence. You could, I suppose, argue that Honda was putting real R&D effort into ASIMO back then, but yeah, pretty much all those other humanoid robots came from research rather than industry. Now, it feels like we’re up to our eyeballs in commercial humanoids, but over the past couple of years, as startups have appeared out of nowhere with brand new humanoid robots, Boston Dynamics (to most outward appearances) was just keepin’ on with that R&D. Today’s announcement certainly changes that.

We are confident in our plan to not just create an impressive R&D project, but to deliver a valuable solution. This journey will start with Hyundai—in addition to investing in us, the Hyundai team is building the next generation of automotive manufacturing capabilities, and it will serve as a perfect testing ground for new Atlas applications.

Boston Dynamics

This is a significant advantage for Boston Dynamics—through Hyundai, they can essentially be their own first customer for humanoid robots, offering an immediate use case in a very friendly transitional environment. Tesla has a similar advantage with Optimus, but Boston Dynamics also has experience sourcing and selling and supporting Spot, which are those business-y things that seem like they’re not the hard part until they turn out to actually be the hard part.

In the months and years ahead, we’re excited to show what the world’s most dynamic humanoid robot can really do—in the lab, in the factory, and in our lives.

World’s most dynamic humanoid, you say? Awesome! Prove it! On video! With outtakes!

The electric version of Atlas will be stronger, with a broader range of motion than any of our previous generations. For example, our last generation hydraulic Atlas (HD Atlas) could already lift and maneuver a wide variety of heavy, irregular objects; we are continuing to build on those existing capabilities and are exploring several new gripper variations to meet a diverse set of expected manipulation needs in customer environments.

Now we’re getting to the good bits. It’s especially notable here that the electric version of Atlas will be “stronger” than the previous hydraulic version, because for a long time hydraulics were really the only way to get the kind of explosively powerful repetitive dynamic motions that enabled Atlas to do jumps and flips. And the switch away from hydraulics enables that extra range of motion now that there aren’t hoses and stuff to deal with.

It’s also pretty clear that the new Atlas is built to continue the kind of work that hydraulic Atlas has been doing, manipulating big and heavy car parts. This is in sharp contrast to most other humanoid robots that we’ve seen, which have primarily focused on moving small objects or bins around in warehouse environments.


We are not just delivering industry-leading hardware. Some of our most exciting progress over the past couple of years has been in software. In addition to our decades of expertise in simulation and model predictive control, we have equipped our robots with new AI and machine learning tools, like reinforcement learning and computer vision to ensure they can operate and adapt efficiently to complex real-world situations.

This is all par for the course now, but it’s also not particularly meaningful without more information. “We will give our robots new capabilities through machine learning and AI” is what every humanoid robotics company (and most other robotics companies) are saying, but I’m not sure that we’re there yet, because there’s an “okay but how?” that needs to happen first. I’m not saying that it won’t happen, just pointing out that until it does happen, it hasn’t happened.

The humanoid form factor is a useful design for robots working in a world designed for people. However, that form factor doesn’t limit our vision of how a bipedal robot can move, what tools it needs to succeed, and how it can help people accomplish more.

Agility Robotics has a similar philosophy with Digit, which has a mostly humanoid form factor to operate in human environments but also uses a non-human leg design because Agility believes that it works better. Atlas is a bit more human-like with its overall design, but there are some striking differences, including both range of motion and the head, both of which we’ll be talking more about.

We designed the electric version of Atlas to be stronger, more dexterous, and more agile. Atlas may resemble a human form factor, but we are equipping the robot to move in the most efficient way possible to complete a task, rather than being constrained by a human range of motion. Atlas will move in ways that exceed human capabilities.

The introductory video with the new Atlas really punches you in the face with this: Atlas is not constrained by human range of motion and will leverage its extra degrees of freedom to operate faster and more efficiently, even if you personally might find some of those motions a little bit unsettling.

Boston Dynamics

Combining decades of practical experience with first principles thinking, we are confident in our ability to deliver a robot uniquely capable of tackling dull, dirty, and dangerous tasks in real applications.

As Marco Hutter pointed out, most commercial robots (humanoids included) are really only targeting tasks that are dull, because dull usually means repetitive, and robots are very good at repetitive. Dirty is a little more complicated, and dangerous is a lot more complicated than that. I appreciate that Boston Dynamics is targeting those other categories of tasks from the outset.

Commercialization takes great engineering, but it also takes patience, imagination, and collaboration. Boston Dynamics has proven that we can deliver the full package with both industry-leading robotics and a complete ecosystem of software, services, and support to make robotics useful in the real world.

There’s a lot more to building a successful robotics company than building a successful robot. Arguably, building a successful robot is not even the hardest part, long term. Having over 1500 Spot robots deployed with customers gives them a well-established product infrastructure baseline to expand from with the new Atlas.

Taking a step back, let’s consider the position that Boston Dynamics is in when it comes to the humanoid space right now.

The new Atlas appears to be a reasonably mature platform with explicit commercial potential, but it’s not yet clear if this particular version of Atlas is truly commercially viable, in terms of being manufacturable and supportable at scale—it’s Atlas 001, after all. There’s likely a huge amount of work that still needs to be done, but it’s a process that the company has already gone through with Spot. My guess is that Boston Dynamics has some catching up to do with respect to other humanoid companies that are already entering pilot projects.

In terms of capabilities, even though the new Atlas hardware is new, it’s not like Boston Dynamics is starting from scratch, since they’re already transferring skills from hydraulic Atlas onto the new platform. But, we haven’t seen the new Atlas doing any practical tasks yet, so it’s hard to tell how far along that is, and it would be premature to assume that hydraulic Atlas doing all kinds of amazing things in YouTube videos implies that electric Atlas can do similar things safely and reliably in a product context. There’s a gap there, possibly an enormous gap, and we’ll need to see more from the new Atlas to understand where it’s at.

And obviously, there’s a lot of competition in humanoids right now, although I’d like to think that the potential for practical humanoid robots to be useful in society is significant enough that there will be room for lots of different approaches. Boston Dynamics was very early to humanoids in general, but they’re somewhat late to this recent (and rather abrupt) humanoid commercialization push. This may not be a problem, especially if Atlas is targeting applications where its strength and flexibility sets it apart from other robots in the space, and if their depth of experience deploying commercial robotic platforms helps them to scale quickly.

Boston Dynamics

An electric Atlas may indeed have been inevitable, and it’s incredibly exciting to (finally!) see Boston Dynamics take this next step towards a commercial humanoid, which would deliver on more than a decade of ambition stretching back through the DARPA Robotics Challenge to PETMAN. We’ve been promised more manipulation footage soon, and Boston Dynamics expects that Atlas will be in the technology demonstration phase in Hyundai factories as early as next year.

We have a lot more questions, but we have a lot more answers, too: you’ll find a Q&A with Boston Dynamics CEO Robert Playter right here.



Yesterday, Boston Dynamics bid farewell to the iconic Atlas humanoid robot. Or, the hydraulically-powered version of Atlas, anyway—if you read between the lines of the video description (or even just read the actual lines of the video description), it was pretty clear that although hydraulic Atlas was retiring, it wasn’t the end of the Atlas humanoid program at Boston Dynamics. In fact, Atlas is already back, and better than ever.

Today, Boston Dynamics is introducing a new version of Atlas that’s all-electric. It’s powered by batteries and electric actuators, no more messy hydraulics. It exceeds human performance in terms of both strength and flexibility. And for the first time, Boston Dynamics is calling this humanoid robot a product. We’ll take a look at everything that Boston Dynamics is announcing today, and have even more detail in this Q&A with Boston Dynamics CEO Robert Playter.

Boston Dynamics’ new electric humanoid has been simultaneously one of the worst and best kept secrets in robotics over the last year or so. What I mean is that it seemed obvious, or even inevitable, that Boston Dynamics would take the expertise in humanoids that it developed with Atlas and combine that with its experience productizing a fully electric system like Spot. But just because something seems inevitable doesn’t mean it actually is inevitable, and Boston Dynamics has done an admirable job of carrying on as normal while building a fully electric humanoid from scratch. And here it is:


It’s all new, it’s all electric, and some of those movements make me slightly uncomfortable (we’ll get into that in a bit). The blog post accompanying the video is sparse on technical detail, but let’s go through the most interesting parts:

A decade ago, we were one of the only companies putting real R&D effort into humanoid robots. Now the landscape in the robotics industry is very different.

In 2010, we took a look at all the humanoid robots then in existence. You could, I suppose, argue that Honda was putting real R&D effort into ASIMO back then, but yeah, pretty much all those other humanoid robots came from research rather than industry. Now, it feels like we’re up to our eyeballs in commercial humanoids, but over the past couple of years, as startups have appeared out of nowhere with brand new humanoid robots, Boston Dynamics (to most outward appearances) was just keepin’ on with that R&D. Today’s announcement certainly changes that.

We are confident in our plan to not just create an impressive R&D project, but to deliver a valuable solution. This journey will start with Hyundai—in addition to investing in us, the Hyundai team is building the next generation of automotive manufacturing capabilities, and it will serve as a perfect testing ground for new Atlas applications.

Boston Dynamics

This is a significant advantage for Boston Dynamics—through Hyundai, they can essentially be their own first customer for humanoid robots, offering an immediate use case in a very friendly transitional environment. Tesla has a similar advantage with Optimus, but Boston Dynamics also has experience sourcing and selling and supporting Spot, which are those business-y things that seem like they’re not the hard part until they turn out to actually be the hard part.

In the months and years ahead, we’re excited to show what the world’s most dynamic humanoid robot can really do—in the lab, in the factory, and in our lives.

World’s most dynamic humanoid, you say? Awesome! Prove it! On video! With outtakes!

The electric version of Atlas will be stronger, with a broader range of motion than any of our previous generations. For example, our last generation hydraulic Atlas (HD Atlas) could already lift and maneuver a wide variety of heavy, irregular objects; we are continuing to build on those existing capabilities and are exploring several new gripper variations to meet a diverse set of expected manipulation needs in customer environments.

Now we’re getting to the good bits. It’s especially notable here that the electric version of Atlas will be “stronger” than the previous hydraulic version, because for a long time hydraulics were really the only way to get the kind of explosively powerful repetitive dynamic motions that enabled Atlas to do jumps and flips. And the switch away from hydraulics enables that extra range of motion now that there aren’t hoses and stuff to deal with.

It’s also pretty clear that the new Atlas is built to continue the kind of work that hydraulic Atlas has been doing, manipulating big and heavy car parts. This is in sharp contrast to most other humanoid robots that we’ve seen, which have primarily focused on moving small objects or bins around in warehouse environments.


We are not just delivering industry-leading hardware. Some of our most exciting progress over the past couple of years has been in software. In addition to our decades of expertise in simulation and model predictive control, we have equipped our robots with new AI and machine learning tools, like reinforcement learning and computer vision to ensure they can operate and adapt efficiently to complex real-world situations.

This is all par for the course now, but it’s also not particularly meaningful without more information. “We will give our robots new capabilities through machine learning and AI” is what every humanoid robotics company (and most other robotics companies) are saying, but I’m not sure that we’re there yet, because there’s an “okay but how?” that needs to happen first. I’m not saying that it won’t happen, just pointing out that until it does happen, it hasn’t happened.

The humanoid form factor is a useful design for robots working in a world designed for people. However, that form factor doesn’t limit our vision of how a bipedal robot can move, what tools it needs to succeed, and how it can help people accomplish more.

Agility Robotics has a similar philosophy with Digit, which has a mostly humanoid form factor to operate in human environments but also uses a non-human leg design because Agility believes that it works better. Atlas is a bit more human-like with its overall design, but there are some striking differences, including both range of motion and the head, both of which we’ll be talking more about.

We designed the electric version of Atlas to be stronger, more dexterous, and more agile. Atlas may resemble a human form factor, but we are equipping the robot to move in the most efficient way possible to complete a task, rather than being constrained by a human range of motion. Atlas will move in ways that exceed human capabilities.

The introductory video with the new Atlas really punches you in the face with this: Atlas is not constrained by human range of motion and will leverage its extra degrees of freedom to operate faster and more efficiently, even if you personally might find some of those motions a little bit unsettling.

Boston Dynamics

Combining decades of practical experience with first principles thinking, we are confident in our ability to deliver a robot uniquely capable of tackling dull, dirty, and dangerous tasks in real applications.

As Marco Hutter pointed out, most commercial robots (humanoids included) are really only targeting tasks that are dull, because dull usually means repetitive, and robots are very good at repetitive. Dirty is a little more complicated, and dangerous is a lot more complicated than that. I appreciate that Boston Dynamics is targeting those other categories of tasks from the outset.

Commercialization takes great engineering, but it also takes patience, imagination, and collaboration. Boston Dynamics has proven that we can deliver the full package with both industry-leading robotics and a complete ecosystem of software, services, and support to make robotics useful in the real world.

There’s a lot more to building a successful robotics company than building a successful robot. Arguably, building a successful robot is not even the hardest part, long term. Having over 1500 Spot robots deployed with customers gives them a well-established product infrastructure baseline to expand from with the new Atlas.

Taking a step back, let’s consider the position that Boston Dynamics is in when it comes to the humanoid space right now.

The new Atlas appears to be a reasonably mature platform with explicit commercial potential, but it’s not yet clear if this particular version of Atlas is truly commercially viable, in terms of being manufacturable and supportable at scale—it’s Atlas 001, after all. There’s likely a huge amount of work that still needs to be done, but it’s a process that the company has already gone through with Spot. My guess is that Boston Dynamics has some catching up to do with respect to other humanoid companies that are already entering pilot projects.

In terms of capabilities, even though the new Atlas hardware is new, it’s not like Boston Dynamics is starting from scratch, since they’re already transferring skills from hydraulic Atlas onto the new platform. But, we haven’t seen the new Atlas doing any practical tasks yet, so it’s hard to tell how far along that is, and it would be premature to assume that hydraulic Atlas doing all kinds of amazing things in YouTube videos implies that electric Atlas can do similar things safely and reliably in a product context. There’s a gap there, possibly an enormous gap, and we’ll need to see more from the new Atlas to understand where it’s at.

And obviously, there’s a lot of competition in humanoids right now, although I’d like to think that the potential for practical humanoid robots to be useful in society is significant enough that there will be room for lots of different approaches. Boston Dynamics was very early to humanoids in general, but they’re somewhat late to this recent (and rather abrupt) humanoid commercialization push. This may not be a problem, especially if Atlas is targeting applications where its strength and flexibility sets it apart from other robots in the space, and if their depth of experience deploying commercial robotic platforms helps them to scale quickly.

Boston Dynamics

An electric Atlas may indeed have been inevitable, and it’s incredibly exciting to (finally!) see Boston Dynamics take this next step towards a commercial humanoid, which would deliver on more than a decade of ambition stretching back through the DARPA Robotics Challenge to PETMAN. We’ve been promised more manipulation footage soon, and Boston Dynamics expects that Atlas will be in the technology demonstration phase in Hyundai factories as early as next year.

We have a lot more questions, but we have a lot more answers, too: you’ll find a Q&A with Boston Dynamics CEO Robert Playter right here.



In a new video posted today, Boston Dynamics is sending off its hydraulic Atlas humanoid robot. “For almost a decade,” the video description reads, “Atlas has sparked our imagination, inspired the next generations of roboticists, and leapt over technical barriers in the field. Now it’s time for our hydraulic Atlas robot to kick back and relax.”

Hydraulic Atlas has certainly earned some relaxation; Boston Dynamics has been absolutely merciless with its humanoid research program. This isn’t a criticism—sometimes being merciless to your hardware is necessary to push the envelope of what’s possible. And as spectators, we just just get to enjoy it, and this highlight reel includes unseen footage of Atlas doing things well along with unseen footage of Atlas doing things not so well. Which, let’s be honest, is what we’re all really here for.

There’s so much more to the history of Atlas than this video shows. Atlas traces its history back to a DARPA project called PETMAN (Protection Ensemble Test Mannequin), which we first wrote about in 2009, so long ago that we had to dig up our own article on the Wayback Machine. As contributor Mikell Taylor wrote back then:

PETMAN is designed to test the suits used by soldiers to protect themselves against chemical warfare agents. It has to be capable of moving just like a soldier—walking, running, bending, reaching, army crawling—to test the suit’s durability in a full range of motion. To really simulate humans as accurately as possible, PETMAN will even be able to “sweat”.

Relative to the other humanoid robots out there at the time (the most famous of which, by far, was Honda’s ASIMO), PETMAN’s movement and balance were very, very impressive. Also impressive was the presumably unintentional way in which this PETMAN video synced up with the music video to Stayin’ Alive by the Bee Gees. Anyway, DARPA was suitably impressed by all this impressiveness, and chose Boston Dynamics to build another humanoid robot to be used for the DARPA Robotics Challenge. That robot was unveiled ten years ago.

The DRC featured a [still looking for a collective noun for humanoid robots] of Atlases, and it seemed like Boston Dynamics was hooked on the form factor, because less than a year after the DRC Finals the company announced the next generation of Atlas, which could do some useful things like move boxes around. Every six months or so, Boston Dynamics put out a new Atlas video, with the robot running or jumping or dancing or doing parkour, leveraging its powerful hydraulics to impress us every single time. There was really nothing like hydraulic Atlas in terms of dynamic performance, and you could argue that there still isn’t. This is a robot that will be missed.

The original rendering of Atlas, followed by four generations of the robot.Boston Dynamics/IEEE Spectrum

Now, if you’re wondering why Boston Dynamics is saying “it’s time for our hydraulic Atlas robot to kick back and relax,” rather than just “our Atlas robot,” and if you’re also wondering why the video description ends with “take a look back at everything we’ve accomplished with the Atlas platform “to date,” well, I can’t help you. Some people might attempt to draw some inferences and conclusions from that very specific and deliberate language, but I would certainly not be one of them, because I’m well known for never speculating about anything.

I would, however, point out a few things that have been obvious for a while now. Namely, that:

  • Boston Dynamics has been focusing fairly explicitly on commercialization over the past several years
  • Complex hydraulic robots are not product friendly because (among other things) they tend to leave puddles of hydraulic fluid on the carpet
  • Boston Dynamics has been very successful with Spot as a productized electric platform based on earlier hydraulic research platforms
  • Fully electric commercial humanoids really seems to be where robotics is at right now
There’s nothing at all new in any of this; the only additional piece of information we have is that the hydraulic Atlas is, as of today, retiring. And I’m just going to leave things there.


In a new video posted today, Boston Dynamics is sending off its hydraulic Atlas humanoid robot. “For almost a decade,” the video description reads, “Atlas has sparked our imagination, inspired the next generations of roboticists, and leapt over technical barriers in the field. Now it’s time for our hydraulic Atlas robot to kick back and relax.”

Hydraulic Atlas has certainly earned some relaxation; Boston Dynamics has been absolutely merciless with its humanoid research program. This isn’t a criticism—sometimes being merciless to your hardware is necessary to push the envelope of what’s possible. And as spectators, we just just get to enjoy it, and this highlight reel includes unseen footage of Atlas doing things well along with unseen footage of Atlas doing things not so well. Which, let’s be honest, is what we’re all really here for.

There’s so much more to the history of Atlas than this video shows. Atlas traces its history back to a DARPA project called PETMAN (Protection Ensemble Test Mannequin), which we first wrote about in 2009, so long ago that we had to dig up our own article on the Wayback Machine. As contributor Mikell Taylor wrote back then:

PETMAN is designed to test the suits used by soldiers to protect themselves against chemical warfare agents. It has to be capable of moving just like a soldier—walking, running, bending, reaching, army crawling—to test the suit’s durability in a full range of motion. To really simulate humans as accurately as possible, PETMAN will even be able to “sweat”.

Relative to the other humanoid robots out there at the time (the most famous of which, by far, was Honda’s ASIMO), PETMAN’s movement and balance were very, very impressive. Also impressive was the presumably unintentional way in which this PETMAN video synced up with the music video to Stayin’ Alive by the Bee Gees. Anyway, DARPA was suitably impressed by all this impressiveness, and chose Boston Dynamics to build another humanoid robot to be used for the DARPA Robotics Challenge. That robot was unveiled ten years ago.

The DRC featured a [still looking for a collective noun for humanoid robots] of Atlases, and it seemed like Boston Dynamics was hooked on the form factor, because less than a year after the DRC Finals the company announced the next generation of Atlas, which could do some useful things like move boxes around. Every six months or so, Boston Dynamics put out a new Atlas video, with the robot running or jumping or dancing or doing parkour, leveraging its powerful hydraulics to impress us every single time. There was really nothing like hydraulic Atlas in terms of dynamic performance, and you could argue that there still isn’t. This is a robot that will be missed.

The original rendering of Atlas, followed by four generations of the robot.Boston Dynamics/IEEE Spectrum

Now, if you’re wondering why Boston Dynamics is saying “it’s time for our hydraulic Atlas robot to kick back and relax,” rather than just “our Atlas robot,” and if you’re also wondering why the video description ends with “take a look back at everything we’ve accomplished with the Atlas platform “to date,” well, I can’t help you. Some people might attempt to draw some inferences and conclusions from that very specific and deliberate language, but I would certainly not be one of them, because I’m well known for never speculating about anything.

I would, however, point out a few things that have been obvious for a while now. Namely, that:

  • Boston Dynamics has been focusing fairly explicitly on commercialization over the past several years
  • Complex hydraulic robots are not product friendly because (among other things) they tend to leave puddles of hydraulic fluid on the carpet
  • Boston Dynamics has been very successful with Spot as a productized electric platform based on earlier hydraulic research platforms
  • Fully electric commercial humanoids really seems to be where robotics is at right now
There’s nothing at all new in any of this; the only additional piece of information we have is that the hydraulic Atlas is, as of today, retiring. And I’m just going to leave things there.


Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup German Open: 17–21 April 2024, KASSEL, GERMANYAUVSI XPONENTIAL 2024: 22–25 April 2024, SAN DIEGOEurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPANRoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDSCybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

I think suggesting that robots can’t fall is much less useful than instead suggesting that robots can fall and get quickly and easily get back up again.

[ Deep Robotics ]

Sanctuary AI says that this video shows Phoenix operating at “human-equivalent speed,” but they don’t specify which human or under which conditions. Though it’s faster than I would be, that’s for sure.

[ Sanctuary AI ]

“Suzume” is an animated film by Makoto Shinkai, in which one of the characters gets turned into a three-legged chair:

Shintaro Inoue from JSK Lab at the University of Tokyo has managed to build a robotic version of that same chair, which is pretty impressive:


[ Github ]

Thanks, Shintaro!

Humanoid robot EVE training for home assistance like putting groceries into the kitchen cabinets.

[ 1X ]

This is the RAM—robotic autonomous mower. It can be dropped anywhere in the world and will wake up with a mission to make tall grass around it shorter. Here is a quick clip of it working on the Presidio in SF.

[ Electric Sheep ]

This year, our robots braved a Finnish winter for the first time. As the snow clears and the days get longer, we’re looking back on how our robots made thousands of deliveries to S Group customers during the colder months.

[ Starship ]

Agility Robotics is doing its best to answer the (very common) question of “Okay, but what can humanoid robots actually do?”


[ Agility Robotics ]

Digit is great and everything, but Cassie will always be one of my favorite robots.

[ CoRIS ]

Adopting omnidirectional Field of View (FoV) cameras in aerial robots vastly improves perception ability, significantly advancing aerial robotics’s capabilities in inspection, reconstruction, and rescue tasks. We propose OmniNxt, a fully open-source aerial robotics platform with omnidirectional perception.

[ OmniNxt ]

The MAkEable framework enhances mobile manipulation in settings designed around humans by streamlining the process of sharing learned skills and experiences among different robots and contexts. Practical tests confirm its efficiency in a range of scenarios, involving different robots, in tasks such as object grasping, coordinated use of both hands in tasks, and the exchange of skills among humanoid robots.

[ Paper ]

We conducted trials of Ringbot outdoors on a 400 meter track. With a power source of 2300 milliamp-hours and 11.1 Volts, Ringbot managed to cover approximately 3 kilometers in 37 minutes. We commanded its target speed and direction using a remote joystick controller (Steam Deck), and Ringbot experienced five falls during this trial.

[ Paper ]

There is a notable lack of consistency about where exactly Boston Dynamics wants you to think Spot’s eyes are.

[ Boston Dynamics ]

As with every single cooking video, there’s a lot of background prep that’s required for this robot to cook an entire meal, but I would utterly demolish those fries.

[ Dino Robotics ]

Here’s everything you need to know about Wing delivery drones, except for how much human time they actually require and the true cost of making deliveries by drone, because those things aren’t fun to talk about.

[ Wing ]

This CMU Teruko Yata Memorial Lecture is by Agility Robotics’ Jonathan Hurst, on “Human-Centric Robots and How Learning Enables Generality.”

Humans have dreamt of robot helpers forever. What’s new is that this dream is becoming real. New developments in AI, building on foundations of hardware and passive dynamics, enable vastly improved generality. Robots can step out of highly structured environments and become more human-centric: operating in human spaces, interacting with people, and doing some basic human workflows. By connecting a Large Language Model, Digit can convert natural language high-level requests into complex robot instructions, composing the library of skills together, using human context to achieve real work in the human world. All of this is new—and it is never going back: AI will drive a fast-following robot revolution that is going to change the way we live.

[ CMU ]



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup German Open: 17–21 April 2024, KASSEL, GERMANYAUVSI XPONENTIAL 2024: 22–25 April 2024, SAN DIEGOEurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPANRoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDSCybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

I think suggesting that robots can’t fall is much less useful than instead suggesting that robots can fall and get quickly and easily get back up again.

[ Deep Robotics ]

Sanctuary AI says that this video shows Phoenix operating at “human-equivalent speed,” but they don’t specify which human or under which conditions. Though it’s faster than I would be, that’s for sure.

[ Sanctuary AI ]

“Suzume” is an animated film by Makoto Shinkai, in which one of the characters gets turned into a three-legged chair:

Shintaro Inoue from JSK Lab at the University of Tokyo has managed to build a robotic version of that same chair, which is pretty impressive:


[ Github ]

Thanks, Shintaro!

Humanoid robot EVE training for home assistance like putting groceries into the kitchen cabinets.

[ 1X ]

This is the RAM—robotic autonomous mower. It can be dropped anywhere in the world and will wake up with a mission to make tall grass around it shorter. Here is a quick clip of it working on the Presidio in SF.

[ Electric Sheep ]

This year, our robots braved a Finnish winter for the first time. As the snow clears and the days get longer, we’re looking back on how our robots made thousands of deliveries to S Group customers during the colder months.

[ Starship ]

Agility Robotics is doing its best to answer the (very common) question of “Okay, but what can humanoid robots actually do?”


[ Agility Robotics ]

Digit is great and everything, but Cassie will always be one of my favorite robots.

[ CoRIS ]

Adopting omnidirectional Field of View (FoV) cameras in aerial robots vastly improves perception ability, significantly advancing aerial robotics’s capabilities in inspection, reconstruction, and rescue tasks. We propose OmniNxt, a fully open-source aerial robotics platform with omnidirectional perception.

[ OmniNxt ]

The MAkEable framework enhances mobile manipulation in settings designed around humans by streamlining the process of sharing learned skills and experiences among different robots and contexts. Practical tests confirm its efficiency in a range of scenarios, involving different robots, in tasks such as object grasping, coordinated use of both hands in tasks, and the exchange of skills among humanoid robots.

[ Paper ]

We conducted trials of Ringbot outdoors on a 400 meter track. With a power source of 2300 milliamp-hours and 11.1 Volts, Ringbot managed to cover approximately 3 kilometers in 37 minutes. We commanded its target speed and direction using a remote joystick controller (Steam Deck), and Ringbot experienced five falls during this trial.

[ Paper ]

There is a notable lack of consistency about where exactly Boston Dynamics wants you to think Spot’s eyes are.

[ Boston Dynamics ]

As with every single cooking video, there’s a lot of background prep that’s required for this robot to cook an entire meal, but I would utterly demolish those fries.

[ Dino Robotics ]

Here’s everything you need to know about Wing delivery drones, except for how much human time they actually require and the true cost of making deliveries by drone, because those things aren’t fun to talk about.

[ Wing ]

This CMU Teruko Yata Memorial Lecture is by Agility Robotics’ Jonathan Hurst, on “Human-Centric Robots and How Learning Enables Generality.”

Humans have dreamt of robot helpers forever. What’s new is that this dream is becoming real. New developments in AI, building on foundations of hardware and passive dynamics, enable vastly improved generality. Robots can step out of highly structured environments and become more human-centric: operating in human spaces, interacting with people, and doing some basic human workflows. By connecting a Large Language Model, Digit can convert natural language high-level requests into complex robot instructions, composing the library of skills together, using human context to achieve real work in the human world. All of this is new—and it is never going back: AI will drive a fast-following robot revolution that is going to change the way we live.

[ CMU ]



We tend to think about hopping robots from the ground up. That is, they start on the ground, and then, by hopping, incorporate a aerial phase into their locomotion. But there’s no reason why aerial robots can’t approach hopping from the other direction, by adding a hopping ground phase to flight. Hopcopter is the first robot that I’ve ever seen give this a try, and it’s remarkably effective, combining a tiny quadrotor with a springy leg to hop hop hop all over the place.

Songnan Bai, Runze Ding, Song Li, and Bingxuan Pu

So why in the air is it worth adding a pogo stick to an otherwise perfectly functional quadrotor? Well, flying is certainly a valuable ability to have, but does take a lot of energy. If you pay close attention to birds (acknowledged experts in the space), they tend to spend a substantial amount of time doing their level best not to fly, often by walking on the ground or jumping around in trees. Not flying most of the time is arguably one of the things that makes birds so successful—it’s that multimodal locomotion capability that has helped them to adapt to so many different environments and situations.

Hopcopter is multimodal as well, although in a slightly more restrictive sense: Its two modes are flying and intermittent flying. But the intermittent flying is very important, because cutting down on that flight phase gives Hopcopter some of the same efficiency benefits that birds experience. By itself, a quadrotor of hopcopter’s size can stay airborne for about 400 seconds, while Hopcopter can hop continuously for more than 20 minutes. If your objective is to cover as much distance as possible, Hopcopter might not be as effective as a legless quadrotor. But if your objective is instead something like inspection or search and rescue, where you need to spend a fair amount of time not moving very much, hopping could be significantly more effective.

Hopcopter is a small quadcopter (specifically a Crazyflie) attached to a springy pogo-stick leg.Songnan Bai, Runze Ding, Song Li, and Bingxuan Pu

Hopcopter can reposition itself on the fly to hop off of different surfaces.Songnan Bai, Runze Ding, Song Li, and Bingxuan Pu

The actual hopping is mostly passive. Hopcopter’s leg is two rigid pieces connected by rubber bands, with a Crazyflie microcopter stapled to the top. During a hop, the Crazyflie can add directional thrust to keep the hops hopping and alter its direction as well as its height, from 0.6 meters to 1.6 meters. There isn’t a lot of room for extra sensors on Hopcopter, but the addition of some stabilizing fins allow for continuous hopping without any positional feedback.

Besides vertical hopping, Hopcopter can also position itself in midair to hop off of surfaces at other orientations, allowing it to almost instantaneously change direction, which is a neat trick.

And it can even do mid air somersaults, because why not?

Hopcopter’s repertoire of tricks includes somersaults.Songnan Bai, Runze Ding, Song Li, and Bingxuan Pu

The researchers, based at the City University of Hong Kong, say that the Hopcopter technology (namely, the elastic leg) could be easily applied to most other quadcopter platforms, turning them into Hopcopters as well. And if you’re more interested in extra payload rather than extra endurance, it’s possible to use hopping in situations where a payload would be too heavy for continuous flight.

The researchers published their work 10 April in Science Robotics.



We tend to think about hopping robots from the ground up. That is, they start on the ground, and then, by hopping, incorporate a aerial phase into their locomotion. But there’s no reason why aerial robots can’t approach hopping from the other direction, by adding a hopping ground phase to flight. Hopcopter is the first robot that I’ve ever seen give this a try, and it’s remarkably effective, combining a tiny quadrotor with a springy leg to hop hop hop all over the place.

Songnan Bai, Runze Ding, Song Li, and Bingxuan Pu

So why in the air is it worth adding a pogo stick to an otherwise perfectly functional quadrotor? Well, flying is certainly a valuable ability to have, but does take a lot of energy. If you pay close attention to birds (acknowledged experts in the space), they tend to spend a substantial amount of time doing their level best not to fly, often by walking on the ground or jumping around in trees. Not flying most of the time is arguably one of the things that makes birds so successful—it’s that multimodal locomotion capability that has helped them to adapt to so many different environments and situations.

Hopcopter is multimodal as well, although in a slightly more restrictive sense: Its two modes are flying and intermittent flying. But the intermittent flying is very important, because cutting down on that flight phase gives Hopcopter some of the same efficiency benefits that birds experience. By itself, a quadrotor of hopcopter’s size can stay airborne for about 400 seconds, while Hopcopter can hop continuously for more than 20 minutes. If your objective is to cover as much distance as possible, Hopcopter might not be as effective as a legless quadrotor. But if your objective is instead something like inspection or search and rescue, where you need to spend a fair amount of time not moving very much, hopping could be significantly more effective.

Hopcopter is a small quadcopter (specifically a Crazyflie) attached to a springy pogo-stick leg.Songnan Bai, Runze Ding, Song Li, and Bingxuan Pu

Hopcopter can reposition itself on the fly to hop off of different surfaces.Songnan Bai, Runze Ding, Song Li, and Bingxuan Pu

The actual hopping is mostly passive. Hopcopter’s leg is two rigid pieces connected by rubber bands, with a Crazyflie microcopter stapled to the top. During a hop, the Crazyflie can add directional thrust to keep the hops hopping and alter its direction as well as its height, from 0.6 meters to 1.6 meters. There isn’t a lot of room for extra sensors on Hopcopter, but the addition of some stabilizing fins allow for continuous hopping without any positional feedback.

Besides vertical hopping, Hopcopter can also position itself in midair to hop off of surfaces at other orientations, allowing it to almost instantaneously change direction, which is a neat trick.

And it can even do mid air somersaults, because why not?

Hopcopter’s repertoire of tricks includes somersaults.Songnan Bai, Runze Ding, Song Li, and Bingxuan Pu

The researchers, based at the City University of Hong Kong, say that the Hopcopter technology (namely, the elastic leg) could be easily applied to most other quadcopter platforms, turning them into Hopcopters as well. And if you’re more interested in extra payload rather than extra endurance, it’s possible to use hopping in situations where a payload would be too heavy for continuous flight.

The researchers published their work 10 April in Science Robotics.

Pages