Feed aggregator



About a decade ago, there was a lot of excitement in the robotics world around gecko-inspired directional adhesives, which are materials that stick without being sticky using the same van der Waals forces that allow geckos to scamper around on vertical panes of glass. They were used extensively in different sorts of climbing robots, some of them quite lovely. Gecko adhesives are uniquely able to stick to very smooth things where your only other option might be suction, which requires all kinds of extra infrastructure to work.

We haven’t seen gecko adhesives around as much of late, for a couple of reasons. First, the ability to only stick to smooth surfaces (which is what gecko adhesives are best at) is a bit of a limitation for mobile robots. And second, the gap between research and useful application is wide and deep and full of crocodiles. I’m talking about the mean kind of crocodiles, not the cuddly kind. But Flexiv Robotics has made gecko adhesives practical for robotic grasping in a commercial environment, thanks in part to a sort of robotic tongue that licks the gecko tape clean.

If you zoom way, way in on a gecko’s foot, you’ll see that each toe is covered in millions of hair-like nanostructures called setae. Each setae branches out at the end into hundreds of more hairs with flat bits at the end called spatulas. The result of this complex arrangement of setae and spatulas is that gecko toes have a ridiculous amount of surface area, meaning that they can leverage the extremely weak van der Waals forces between molecules to stick themselves to perfectly flat and smooth surfaces. This technique works exceptionally well: Geckos can hang from glass by a single toe, and a fully adhered gecko can hold something like 140 kg (which, unfortunately, seems to be an extrapolation rather than an experimental result). And luckily for the gecko, the structure of the spatulas makes the adhesion directional, so that when its toes are no longer being loaded, they can be easily peeled off of whatever they’re attached to.

Natural gecko adhesive structure, along with a synthetic adhesive (f).Gecko adhesion: evolutionary nanotechnology, by Kellar Autumn and Nick Gravish

Since geckos don’t “stick” to things in the sense that we typically use the word “sticky,” a better way of characterizing what geckos can do is as “dry adhesion,” as opposed to something that involves some sort of glue. You can also think about gecko toes as just being very, very high friction, and it’s this perspective that is particularly interesting in the context of robotic grippers.

This is Flexiv’s “Grav Enhanced” gripper, which uses a combination of pinch grasping and high friction gecko adhesive to lift heavy and delicate objects without having to squeeze them. When you think about a traditional robotic grasping system trying to lift something like a water balloon, you have to squeeze that balloon until the friction between the side of the gripper and the side of the balloon overcomes the weight of the balloon itself. The higher the friction, the lower the squeeze required, and although a water balloon might be an extreme example, maximizing gripper friction can make a huge difference when it comes to fragile or deformable objects.

There are a couple of problems with dry adhesive, however. The tiny structures that make the adhesive adhere can be prone to damage, and the fact that dry adhesive will stick to just about anything it can make good contact with means that it’ll rapidly accumulate dirt outside of a carefully controlled environment. In research contexts, these problems aren’t all that significant, but for a commercial system, you can’t have something that requires constant attention.

Flexiv says that the microstructure material that makes up their gecko adhesive was able to sustain two million gripping cycles without any visible degradation in performance, suggesting that as long as you use the stuff within the tolerances that it’s designed for, it should keep on adhering to things indefinitely—although trying to lift too much weight will tear the microstructures, ruining the adhesive properties after just a few cycles. And to keep the adhesive from getting clogged up with debris, Flexiv came up with this clever little cleaning station that acts like a little robotic tongue of sorts:

Interestingly, geckos themselves don’t seem to use their own tongues to clean their toes. They lick their eyeballs on the regular, like all normal humans do, but gecko toes appear to be self-cleaning, which is a pretty neat trick. It’s certainly possible to make self-cleaning synthetic gecko adhesive, but Flexiv tells us that “due to technical and practical limitations, replicating this process in our own gecko adhesive material is not possible. Essentially, we replicate the microstructure of a gecko’s footpad, but not its self-cleaning process.” This likely goes back to that whole thing about what works in a research context versus what works in a commercial context, and Flexiv needs their gecko adhesive to handle all those millions of cycles.

Flexiv says that they were made aware of the need for a system like this when one of their clients started using the gripper for the extra-dirty task of sorting trash from recycling, and that the solution was inspired by a lint roller. And I have to say, I appreciate the simplicity of the system that Flexiv came up with to solve the problem directly and efficiently. Maybe one day, they’ll be able to replicate a real gecko’s natural self-cleaning toes with a durable and affordable artificial dry adhesive, but until that happens, an artificial tongue does the trick.

Accurate texture classification empowers robots to improve their perception and comprehension of the environment, enabling informed decision-making and appropriate responses to diverse materials and surfaces. Still, there are challenges for texture classification regarding the vast amount of time series data generated from robots’ sensors. For instance, robots are anticipated to leverage human feedback during interactions with the environment, particularly in cases of misclassification or uncertainty. With the diversity of objects and textures in daily activities, Active Learning (AL) can be employed to minimize the number of samples the robot needs to request from humans, streamlining the learning process. In the present work, we use AL to select the most informative samples for annotation, thus reducing the human labeling effort required to achieve high performance for classifying textures. We also use a sliding window strategy for extracting features from the sensor’s time series used in our experiments. Our multi-class dataset (e.g., 12 textures) challenges traditional AL strategies since standard techniques cannot control the number of instances per class selected to be labeled. Therefore, we propose a novel class-balancing instance selection algorithm that we integrate with standard AL strategies. Moreover, we evaluate the effect of sliding windows of two-time intervals (3 and 6 s) on our AL Strategies. Finally, we analyze in our experiments the performance of AL strategies, with and without the balancing algorithm, regarding f1-score, and positive effects are observed in terms of performance when using our proposed data pipeline. Our results show that the training data can be reduced to 70% using an AL strategy regardless of the machine learning model and reach, and in many cases, surpass a baseline performance. Finally, exploring the textures with a 6-s window achieves the best performance, and using either Extra Trees produces an average f1-score of 90.21% in the texture classification data set.



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Cybathlon Challenges: 2 February 2024, ZURICHEurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPAN

Enjoy today’s videos!

Is “scamperiest” a word? If not, it should be, because this is the scamperiest robot I’ve ever seen.

[ ABS ]

GITAI is pleased to announce that its 1.5-meter-long autonomous dual robotic arm system (S2) has successfully arrived at the International Space Station (ISS) aboard the SpaceX Falcon 9 rocket (NG-20) to conduct an external demonstration of in-space servicing, assembly, and manufacturing (ISAM) while onboard the ISS. The success of the S2 tech demo will be a major milestone for GITAI, confirming the feasibility of this technology as a fully operational system in space.

[ GITAI ]

This work presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.

And if you want to get exhausted on behalf of a robot, the full 400-meter dash is below.

[ Hybrid Robotics ]

NASA’s Ingenuity Mars Helicopter pushed aerodynamic limits during the final months of its mission, setting new records for speed, distance, and altitude. Hear from Ingenuity chief engineer Travis Brown on how the data the team collected could eventually be used in future rotorcraft designs.

[ NASA ]

BigDog: 15 years of solving mobility problems its own way.

[ Boston Dynamics ]

[Harvard School of Engineering and Applied Sciences] researchers are helping develop resilient and autonomous deep space and extraterrestrial habitations by developing technologies to let autonomous robots repair or replace damaged components in a habitat. The research is part of the Resilient ExtraTerrestrial Habitats institute (RETHi) led by Purdue University, in partnership with [Harvard] SEAS, the University of Connecticut and the University of Texas at San Antonio. Its goal is to “design and operate resilient deep space habitats that can adapt, absorb and rapidly recover from expected and unexpected disruptions.”

[ Harvard SEAS ]

Researchers from Huazhong University of Science and Technology (HUST) in a recent T-RO paper describe and construct a novel variable stiffness spherical joint motor that enables dexterous motion and joint compliance in omni-directions.

[ Paper ]

Thanks, Ram!

We are told that this new robot from HEBI is called “Mark Suckerberg” and that they’ve got a pretty cool application in mind for it, to be revealed later this year.

[ HEBI Robotics ]

Thanks, Dave!

Dive into the first edition of our new Real-World-Robotics class at ETH Zürich! Our students embarked on an incredible journey, creating their human-like robotic hands from scratch. In just three months, the teams designed, built, and programmed their tendon-driven robotic hands, mastering dexterous manipulation with reinforcement learning! The result? A spectacular display of innovation and skill during our grand final.

[ SRL ETHZ ]

Carnegie Mellon researchers have built a system with a robotic arm atop a RangerMini 2.0 robotic cart from AgileX robotics to make what they’re calling a platform for “intelligent movement and processing.”

[ CMU ] via [ AgileX ]

Picassnake is our custom-made robot that paints pictures from music. Picassnake consists of an arm and a head, embedded in a plush snake doll. The robot is connected to a laptop for control and music processing, which can be fed through a microphone or an MP3 file. To open the media source, an operator can use the graphical user interface or place a text QR code in front of a webcam. Once the media source is opened, Picassnake generates unique strokes based on the music and translates the strokes to physical movement to paint them on canvas.

[ Picassnake ]

In April 2021, NASA’s Ingenuity Mars Helicopter became the first spacecraft to achieve powered, controlled flight on another world. With 72 successful flights, Ingenuity has far surpassed its originally planned technology demonstration of up to five flights. On Jan. 18, Ingenuity flew for the final time on the Red Planet. Join Tiffany Morgan, NASA’s Mars Exploration Program Deputy Director, and Teddy Tzanetos, Ingenuity Project Manager, as they discuss these historic flights and what they could mean for future extraterrestrial aerial exploration.

[ NASA ]



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Cybathlon Challenges: 2 February 2024, ZURICHEurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPAN

Enjoy today’s videos!

Is “scamperiest” a word? If not, it should be, because this is the scamperiest robot I’ve ever seen.

[ ABS ]

GITAI is pleased to announce that its 1.5-meter-long autonomous dual robotic arm system (S2) has successfully arrived at the International Space Station (ISS) aboard the SpaceX Falcon 9 rocket (NG-20) to conduct an external demonstration of in-space servicing, assembly, and manufacturing (ISAM) while onboard the ISS. The success of the S2 tech demo will be a major milestone for GITAI, confirming the feasibility of this technology as a fully operational system in space.

[ GITAI ]

This work presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.

And if you want to get exhausted on behalf of a robot, the full 400-meter dash is below.

[ Hybrid Robotics ]

NASA’s Ingenuity Mars Helicopter pushed aerodynamic limits during the final months of its mission, setting new records for speed, distance, and altitude. Hear from Ingenuity chief engineer Travis Brown on how the data the team collected could eventually be used in future rotorcraft designs.

[ NASA ]

BigDog: 15 years of solving mobility problems its own way.

[ Boston Dynamics ]

[Harvard School of Engineering and Applied Sciences] researchers are helping develop resilient and autonomous deep space and extraterrestrial habitations by developing technologies to let autonomous robots repair or replace damaged components in a habitat. The research is part of the Resilient ExtraTerrestrial Habitats institute (RETHi) led by Purdue University, in partnership with [Harvard] SEAS, the University of Connecticut and the University of Texas at San Antonio. Its goal is to “design and operate resilient deep space habitats that can adapt, absorb and rapidly recover from expected and unexpected disruptions.”

[ Harvard SEAS ]

Researchers from Huazhong University of Science and Technology (HUST) in a recent T-RO paper describe and construct a novel variable stiffness spherical joint motor that enables dexterous motion and joint compliance in omni-directions.

[ Paper ]

Thanks, Ram!

We are told that this new robot from HEBI is called “Mark Suckerberg” and that they’ve got a pretty cool application in mind for it, to be revealed later this year.

[ HEBI Robotics ]

Thanks, Dave!

Dive into the first edition of our new Real-World-Robotics class at ETH Zürich! Our students embarked on an incredible journey, creating their human-like robotic hands from scratch. In just three months, the teams designed, built, and programmed their tendon-driven robotic hands, mastering dexterous manipulation with reinforcement learning! The result? A spectacular display of innovation and skill during our grand final.

[ SRL ETHZ ]

Carnegie Mellon researchers have built a system with a robotic arm atop a RangerMini 2.0 robotic cart from AgileX robotics to make what they’re calling a platform for “intelligent movement and processing.”

[ CMU ] via [ AgileX ]

Picassnake is our custom-made robot that paints pictures from music. Picassnake consists of an arm and a head, embedded in a plush snake doll. The robot is connected to a laptop for control and music processing, which can be fed through a microphone or an MP3 file. To open the media source, an operator can use the graphical user interface or place a text QR code in front of a webcam. Once the media source is opened, Picassnake generates unique strokes based on the music and translates the strokes to physical movement to paint them on canvas.

[ Picassnake ]

In April 2021, NASA’s Ingenuity Mars Helicopter became the first spacecraft to achieve powered, controlled flight on another world. With 72 successful flights, Ingenuity has far surpassed its originally planned technology demonstration of up to five flights. On Jan. 18, Ingenuity flew for the final time on the Red Planet. Join Tiffany Morgan, NASA’s Mars Exploration Program Deputy Director, and Teddy Tzanetos, Ingenuity Project Manager, as they discuss these historic flights and what they could mean for future extraterrestrial aerial exploration.

[ NASA ]

Online questionnaires that use crowdsourcing platforms to recruit participants have become commonplace, due to their ease of use and low costs. Artificial intelligence (AI)-based large language models (LLMs) have made it easy for bad actors to automatically fill in online forms, including generating meaningful text for open-ended tasks. These technological advances threaten the data quality for studies that use online questionnaires. This study tested whether text generated by an AI for the purpose of an online study can be detected by both humans and automatic AI detection systems. While humans were able to correctly identify the authorship of such text above chance level (76% accuracy), their performance was still below what would be required to ensure satisfactory data quality. Researchers currently have to rely on a lack of interest among bad actors to successfully use open-ended responses as a useful tool for ensuring data quality. Automatic AI detection systems are currently completely unusable. If AI submissions of responses become too prevalent, then the costs associated with detecting fraudulent submissions will outweigh the benefits of online questionnaires. Individual attention checks will no longer be a sufficient tool to ensure good data quality. This problem can only be systematically addressed by crowdsourcing platforms. They cannot rely on automatic AI detection systems and it is unclear how they can ensure data quality for their paying clients.

Introduction: Navigation satellite systems can fail to work or work incorrectly in a number of conditions: signal shadowing, electromagnetic interference, atmospheric conditions, and technical problems. All of these factors can significantly affect the localization accuracy of autonomous driving systems. This emphasizes the need for other localization technologies, such as Lidar.

Methods: The use of the Kalman filter in combination with Lidar can be very effective in various applications due to the synergy of their capabilities. The Kalman filter can improve the accuracy of lidar measurements by taking into account the noise and inaccuracies present in the measurements.

Results: In this paper, we propose a parallel Kalman algorithm in three-dimensional space to speed up the computational speed of Lidar localization. At the same time, the initial localization accuracy of the latter is preserved. A distinctive feature of the proposed approach is that the Kalman localization algorithm itself is parallelized, rather than the process of building a map for navigation. The proposed algorithm allows us to obtain the result 3.8 times faster without compromising the localization accuracy, which was 3% for both cases, making it effective for real-time decision-making.

Discussion: The reliability of this result is confirmed by a preliminary theoretical estimate of the acceleration rate based on Ambdahl’s law. Accelerating the Kalman filter with CUDA for Lidar localization can be of significant practical value, especially in real-time and in conditions where large amounts of data from Lidar sensors need to be processed.



Just because an object is around a corner doesn’t mean it has to be hidden. Non-line-of-sight imaging can peek around corners and spot those objects, but it has so far been limited to a narrow band of frequencies. Now, a new sensor can help extend this technique from working with visible light to infrared. This advance could help make autonomous vehicles safer, among other potential applications.

Non-line-of-sight imaging relies on the faint signals of light beams that have reflected off surfaces in order to reconstruct images. The ability to see around corners may prove useful for machine vision—for instance, helping autonomous vehicles foresee hidden dangers to better predict how to respond to them, says Xiaolong Hu, the senior author of the study and a professor at Tianjin University in Tianjin, China. It may also improve endoscopes that help doctors peer inside the body.

The light that non-line-of-sight imaging depends on is typically very dim, and until now, the detectors that were efficient and sensitive enough for non-line-of-sight imaging could only detect either visible or near-infrared light. Moving to longer wavelengths might have several advantages, such as dealing with less interference from sunshine, and the possibility of using lasers that are safe around eyes, Hu says.

Now Hu and his colleagues have for the first time performed non-line-of-sight imaging using 1,560- and 1,997-nanometer infrared wavelengths. “This extension in spectrum paves the way for more practical applications,” Hu says.

The researchers imaged several objects with a non-line-of-sight infrared camera, both without [middle column] and with [right column] de-noising algorithms.Tianjin University

In the new study, the researchers experimented with superconducting nanowire single-photon detectors. In each device, a 40-nanometer-wide niobium titanium nitride wire was cooled to about 2 kelvins (about –271 °C), rendering the wire superconductive. A single photon could disrupt this fragile state, generating electrical pulses that enabled the efficient detection of individual photons.

The scientists contorted the nanowire in each device into a fractal pattern that took on similar shapes at various magnifications. This let the sensor detect photons of all polarizations, boosting its efficiency.

The new detector was up to nearly three times as efficient as other single-photon detectors at sensing near- and mid-infrared light. This let the researchers perform non-line-of-sight imaging, achieving a spatial resolution of roughly 1.3 to 1.5 centimeters.

In addition to an algorithm that reconstructed non-line-of-sight images based off multiple scattered light rays, the scientists developed a new algorithm that helped remove noise from their data. When each pixel during the scanning process was given 5 milliseconds to collect photons, the new de-noising algorithm reduced the root mean square error—a measure of its deviation from a perfect image—of reconstructed images by about eightfold.

The researchers now plan to arrange multiple sensors into larger arrays to boost efficiency, reduce scanning time, and extend the distance over which imaging can take place, Hu says. They would also like to test their device in daylight conditions, he adds.

The scientists detailed their findings 30 November in the journal Optics Express.



Just because an object is around a corner doesn’t mean it has to be hidden. Non-line-of-sight imaging can peek around corners and spot those objects, but it has so far been limited to a narrow band of frequencies. Now, a new sensor can help extend this technique from working with visible light to infrared. This advance could help make autonomous vehicles safer, among other potential applications.

Non-line-of-sight imaging relies on the faint signals of light beams that have reflected off surfaces in order to reconstruct images. The ability to see around corners may prove useful for machine vision—for instance, helping autonomous vehicles foresee hidden dangers to better predict how to respond to them, says Xiaolong Hu, the senior author of the study and a professor at Tianjin University in Tianjin, China. It may also improve endoscopes that help doctors peer inside the body.

The light that non-line-of-sight imaging depends on is typically very dim, and until now, the detectors that were efficient and sensitive enough for non-line-of-sight imaging could only detect either visible or near-infrared light. Moving to longer wavelengths might have several advantages, such as dealing with less interference from sunshine, and the possibility of using lasers that are safe around eyes, Hu says.

Now Hu and his colleagues have for the first time performed non-line-of-sight imaging using 1,560- and 1,997-nanometer infrared wavelengths. “This extension in spectrum paves the way for more practical applications,” Hu says.

The researchers imaged several objects with a non-line-of-sight infrared camera, both without [middle column] and with [right column] de-noising algorithms.Tianjin University

In the new study, the researchers experimented with superconducting nanowire single-photon detectors. In each device, a 40-nanometer-wide niobium titanium nitride wire was cooled to about 2 kelvins (about –271 °C), rendering the wire superconductive. A single photon could disrupt this fragile state, generating electrical pulses that enabled the efficient detection of individual photons.

The scientists contorted the nanowire in each device into a fractal pattern that took on similar shapes at various magnifications. This let the sensor detect photons of all polarizations, boosting its efficiency.

The new detector was up to nearly three times as efficient as other single-photon detectors at sensing near- and mid-infrared light. This let the researchers perform non-line-of-sight imaging, achieving a spatial resolution of roughly 1.3 to 1.5 centimeters.

In addition to an algorithm that reconstructed non-line-of-sight images based off multiple scattered light rays, the scientists developed a new algorithm that helped remove noise from their data. When each pixel during the scanning process was given 5 milliseconds to collect photons, the new de-noising algorithm reduced the root mean square error—a measure of its deviation from a perfect image—of reconstructed images by about eightfold.

The researchers now plan to arrange multiple sensors into larger arrays to boost efficiency, reduce scanning time, and extend the distance over which imaging can take place, Hu says. They would also like to test their device in daylight conditions, he adds.

The scientists detailed their findings 30 November in the journal Optics Express.

Introduction: Humans and robots are increasingly collaborating on complex tasks such as firefighting. As robots are becoming more autonomous, collaboration in human-robot teams should be combined with meaningful human control. Variable autonomy approaches can ensure meaningful human control over robots by satisfying accountability, responsibility, and transparency. To verify whether variable autonomy approaches truly ensure meaningful human control, the concept should be operationalized to allow its measurement. So far, designers of variable autonomy approaches lack metrics to systematically address meaningful human control.

Methods: Therefore, this qualitative focus group (n = 5 experts) explored quantitative operationalizations of meaningful human control during dynamic task allocation using variable autonomy in human-robot teams for firefighting. This variable autonomy approach requires dynamic allocation of moral decisions to humans and non-moral decisions to robots, using robot identification of moral sensitivity. We analyzed the data of the focus group using reflexive thematic analysis.

Results: Results highlight the usefulness of quantifying the traceability requirement of meaningful human control, and how situation awareness and performance can be used to objectively measure aspects of the traceability requirement. Moreover, results emphasize that team and robot outcomes can be used to verify meaningful human control but that identifying reasons underlying these outcomes determines the level of meaningful human control.

Discussion: Based on our results, we propose an evaluation method that can verify if dynamic task allocation using variable autonomy in human-robot teams for firefighting ensures meaningful human control over the robot. This method involves subjectively and objectively quantifying traceability using human responses during and after simulations of the collaboration. In addition, the method involves semi-structured interviews after the simulation to identify reasons underlying outcomes and suggestions to improve the variable autonomy approach.

To effectively control a robot’s motion, it is common to employ a simplified model that approximates the robot’s dynamics. Nevertheless, discrepancies between the actual mechanical properties of the robot and the simplified model can result in motion failures. To address this issue, this study introduces a pneumatic-driven bipedal musculoskeletal robot designed to closely match the mechanical characteristics of a simplified spring-loaded inverted pendulum (SLIP) model. The SLIP model is widely utilized in robotics due to its passive stability and dynamic properties resembling human walking patterns. A musculoskeletal bipedal robot was designed and manufactured to concentrate its center of mass within a compact body around the hip joint, featuring low leg inertia in accordance with SLIP model principles. Furthermore, we validated that the robot exhibits similar dynamic characteristics to the SLIP model through a sequential jumping experiment and by comparing its performance to SLIP model simulation.

Deep generative models (DGM) are increasingly employed in emergent communication systems. However, their application in multimodal data contexts is limited. This study proposes a novel model that combines multimodal DGM with the Metropolis-Hastings (MH) naming game, enabling two agents to focus jointly on a shared subject and develop common vocabularies. The model proves that it can handle multimodal data, even in cases of missing modalities. Integrating the MH naming game with multimodal variational autoencoders (VAE) allows agents to form perceptual categories and exchange signs within multimodal contexts. Moreover, fine-tuning the weight ratio to favor a modality that the model could learn and categorize more readily improved communication. Our evaluation of three multimodal approaches - mixture-of-experts (MoE), product-of-experts (PoE), and mixture-of-product-of-experts (MoPoE)–suggests an impact on the creation of latent spaces, the internal representations of agents. Our results from experiments with the MNIST + SVHN and Multimodal165 datasets indicate that combining the Gaussian mixture model (GMM), PoE multimodal VAE, and MH naming game substantially improved information sharing, knowledge formation, and data reconstruction.

Exoskeletons that assist in ankle plantarflexion can improve energy economy in locomotion. Characterizing the joint-level mechanisms behind these reductions in energy cost can lead to a better understanding of how people interact with these devices, as well as to improved device design and training protocols. We examined the biomechanical responses to exoskeleton assistance in exoskeleton users trained with a lengthened protocol. Kinematics at unassisted joints were generally unchanged by assistance, which has been observed in other ankle exoskeleton studies. Peak plantarflexion angle increased with plantarflexion assistance, which led to increased total and biological mechanical power despite decreases in biological joint torque and whole-body net metabolic energy cost. Ankle plantarflexor activity also decreased with assistance. Muscles that act about unassisted joints also increased activity for large levels of assistance, and this response should be investigated over long-term use to prevent overuse injuries.

Introduction: Patients who are hospitalized may be at a higher risk for falling, which can result in additional injuries, longer hospitalizations, and extra cost for healthcare organizations. A frequent context for these falls is when a hospitalized patient needs to use the bathroom. While it is possible that “high-tech” tools like robots and AI applications can help, adopting a human-centered approach and engaging users and other affected stakeholders in the design process can help to maximize benefits and avoid unintended consequences.

Methods: Here, we detail our findings from a human-centered design research effort to investigate how the process of toileting a patient can be ameliorated through the application of advanced tools like robots and AI. We engaged healthcare professionals in interviews, focus groups, and a co-creation session in order to recognize common barriers in the toileting process and find opportunities for improvement.

Results: In our conversations with participants, who were primarily nurses, we learned that toileting is more than a nuisance for technology to remove through automation. Nurses seem keenly aware and responsive to the physical and emotional pains experienced by patients during the toileting process, and did not see technology as a feasible or welcomed substitute. Instead, nurses wanted tools which supported them in providing this care to their patients. Participants envisioned tools which helped them anticipate and understand patient toileting assistance needs so they could plan to assist at convenient times during their existing workflows. Participants also expressed favorability towards mechanical assistive features which were incorporated into existing equipment to ensure ubiquitous availability when needed without adding additional mass to an already cramped and awkward environment.

Discussion: We discovered that the act of toileting served more than one function, and can be viewed as a valuable touchpoint in which nurses can assess, support, and encourage their patients to engage in their own recovery process as they perform a necessary and normal function of life. While we found opportunities for technology to make the process safer and less burdensome for patients and clinical staff alike, we believe that designers should preserve and enhance the therapeutic elements of the nurse-patient interaction rather than eliminate it through automation.

Introduction: Communication from automated vehicles (AVs) to pedestrians using augmented reality (AR) could positively contribute to traffic safety. However, previous AR research for pedestrians was mainly conducted through online questionnaires or experiments in virtual environments instead of real ones.

Methods: In this study, 28 participants conducted trials outdoors with an approaching AV and were supported by four different AR interfaces. The AR experience was created by having participants wear a Varjo XR-3 headset with see-through functionality, with the AV and AR elements virtually overlaid onto the real environment. The AR interfaces were vehicle-locked (Planes on vehicle), world-locked (Fixed pedestrian lights, Virtual fence), or head-locked (Pedestrian lights HUD). Participants had to hold down a button when they felt it was safe to cross, and their opinions were obtained through rating scales, interviews, and a questionnaire.

Results: The results showed that participants had a subjective preference for AR interfaces over no AR interface. Furthermore, the Pedestrian lights HUD was more effective than no AR interface in a statistically significant manner, as it led to participants more frequently keeping the button pressed. The Fixed pedestrian lights scored lower than the other interfaces, presumably due to low saliency and the fact that participants had to visually identify both this AR interface and the AV.

Discussion: In conclusion, while users favour AR in AV-pedestrian interactions over no AR, its effectiveness depends on design factors like location, visibility, and visual attention demands. In conclusion, this work provides important insights into the use of AR outdoors. The findings illustrate that, in these circumstances, a clear and easily interpretable AR interface is of key importance.



Citing “no path to regulatory approval in the European Union,” Amazon and iRobot have announced the termination of an acquisition deal first announced in August of 2022 that would have made iRobot a part of Amazon and valued the robotics company at US $1.4 billion.

The European Commission released a statement today that explained some of its concerns, which to be fair, seem like reasonable things to be concerned about:

Our in-depth investigation preliminarily showed that the acquisition of iRobot would have enabled Amazon to foreclose iRobot’s rivals by restricting or degrading access to the Amazon Stores.… We also preliminarily found that Amazon would have had the incentive to foreclose iRobot’s rivals because it would have been economically profitable to do so. All such foreclosure strategies could have restricted competition in the market for robot vacuum cleaners, leading to higher prices, lower quality, and less innovation for consumers.

Amazon, for its part, characterizes this as “undue and disproportionate regulatory hurdles.” Whoever you believe is correct, the protracted strangulation of this acquisition deal has not been great for iRobot, and its termination is potentially disastrous—Amazon will have to pay iRobot a $94 million termination fee, which is basically nothing for it, and meanwhile iRobot is already laying off 350 people, or 31 percent of its head count.

From one of iRobot’s press releases:

“iRobot is an innovation pioneer with a clear vision to make consumer robots a reality,” said Colin Angle, Founder of iRobot. “The termination of the agreement with Amazon is disappointing, but iRobot now turns toward the future with a focus and commitment to continue building thoughtful robots and intelligent home innovations that make life better, and that our customers around the world love.”

The reason that I don’t feel much better after reading that statement is that Colin Angle has already stepped down as chairman and CEO of iRobot. Angle was one of the founders of iRobot (along with Rodney Brooks and Helen Greiner) and has stuck with the company for its entire 30+ year existence, until just now. So, that’s not great. Also, I’m honestly not sure how iRobot is going to create much in the way of home innovations since the press release states that the company is “pausing all work related to non-floor care innovations, including air purification, robotic lawn mowing and education,” while also “reducing R&D expense by approximately $20 million year-over-year.”

iRobot’s lawn mower has been paused for a while now, so it’s not a huge surprise that nothing will move forward there, but a pause on the education robots like Create and Root is a real blow to the robotics community. And even if iRobot is focusing on floor-care innovations, I’m not sure how much innovation will be possible with a slashed R&D budget amidst huge layoffs.

Sigh.

On LinkedIn, Colin Angle wrote a little bit about what he called “the magic of iRobot”:

iRobot built the first micro rovers and changed space exploration forever. iRobot built the first practical robots that left the research lab and went on combat missions to defuse bombs, saving 1000’s of lives. iRobot’s robots crucially enabled the cold shutdown of the reactors at Fukushima, found the underwater pools of oil in the aftermath of the deep horizon oil rig disaster in the Gulf of Mexico. And pioneered an industry with Roomba, fulfilling the unfulfilled promise of over 50 years for practical robots in the home.

Why?

As I think about all the events surrounding those actions, there is a common thread. We believed we could. And we decided to try with a spirit of pragmatic optimism. Building robots means knowing failure. It does not treat blind hope kindly. Robots are too complex. Robots are too expensive. Robots are too challenging for hope alone to have the slightest chance of success. But combining the belief that a problem can be solved with a commitment to the work to solve it enabled us to change the world.

And that’s what I personally find so worrying about all of this. iRobot has a treasured history of innovation which is full of successes and failures and really weird stuff, and it’s hard to see how that will be able to effectively continue. Here are a couple of my favorite weird iRobot things, including a PackBot that flies (for a little bit) and a morphing blobular robot:

I suppose it’s worth pointing out that the weirdest stuff (like in the videos above) is all over a decade old, and you can reasonably ask whether iRobot was that kind of company anymore even before this whole Amazon thing happened. The answer is probably not, since the company has chosen to focus almost exclusively on floor-care robots. But even there we’ve seen consistent innovation in hardware and software that pretty much every floor-care robot company seems to then pick up on about a year later. This is not to say that other floor-care robots can’t innovate, but it’s undeniable that iRobot has been a driving force behind that industry. Will that continue? I really hope so.



Citing “no path to regulatory approval in the European Union,” Amazon and iRobot have announced the termination of an acquisition deal first announced in August of 2022 that would have made iRobot a part of Amazon and valued the robotics company at US $1.4 billion.

The European Commission released a statement today that explained some of its concerns, which to be fair, seem like reasonable things to be concerned about:

Our in-depth investigation preliminarily showed that the acquisition of iRobot would have enabled Amazon to foreclose iRobot’s rivals by restricting or degrading access to the Amazon Stores.… We also preliminarily found that Amazon would have had the incentive to foreclose iRobot’s rivals because it would have been economically profitable to do so. All such foreclosure strategies could have restricted competition in the market for robot vacuum cleaners, leading to higher prices, lower quality, and less innovation for consumers.

Amazon, for its part, characterizes this as “undue and disproportionate regulatory hurdles.” Whoever you believe is correct, the protracted strangulation of this acquisition deal has not been great for iRobot, and its termination is potentially disastrous—Amazon will have to pay iRobot a $94 million termination fee, which is basically nothing for it, and meanwhile iRobot is already laying off 350 people, or 31 percent of its head count.

From one of iRobot’s press releases:

“iRobot is an innovation pioneer with a clear vision to make consumer robots a reality,” said Colin Angle, Founder of iRobot. “The termination of the agreement with Amazon is disappointing, but iRobot now turns toward the future with a focus and commitment to continue building thoughtful robots and intelligent home innovations that make life better, and that our customers around the world love.”

The reason that I don’t feel much better after reading that statement is that Colin Angle has already stepped down as chairman and CEO of iRobot. Angle was one of the founders of iRobot (along with Rodney Brooks and Helen Greiner) and has stuck with the company for its entire 30+ year existence, until just now. So, that’s not great. Also, I’m honestly not sure how iRobot is going to create much in the way of home innovations since the press release states that the company is “pausing all work related to non-floor care innovations, including air purification, robotic lawn mowing and education,” while also “reducing R&D expense by approximately $20 million year-over-year.”

iRobot’s lawn mower has been paused for a while now, so it’s not a huge surprise that nothing will move forward there, but a pause on the education robots like Create and Root is a real blow to the robotics community. And even if iRobot is focusing on floor-care innovations, I’m not sure how much innovation will be possible with a slashed R&D budget amidst huge layoffs.

Sigh.

On LinkedIn, Colin Angle wrote a little bit about what he called “the magic of iRobot”:

iRobot built the first micro rovers and changed space exploration forever. iRobot built the first practical robots that left the research lab and went on combat missions to defuse bombs, saving 1000’s of lives. iRobot’s robots crucially enabled the cold shutdown of the reactors at Fukushima, found the underwater pools of oil in the aftermath of the deep horizon oil rig disaster in the Gulf of Mexico. And pioneered an industry with Roomba, fulfilling the unfulfilled promise of over 50 years for practical robots in the home.

Why?

As I think about all the events surrounding those actions, there is a common thread. We believed we could. And we decided to try with a spirit of pragmatic optimism. Building robots means knowing failure. It does not treat blind hope kindly. Robots are too complex. Robots are too expensive. Robots are too challenging for hope alone to have the slightest chance of success. But combining the belief that a problem can be solved with a commitment to the work to solve it enabled us to change the world.

And that’s what I personally find so worrying about all of this. iRobot has a treasured history of innovation which is full of successes and failures and really weird stuff, and it’s hard to see how that will be able to effectively continue. Here are a couple of my favorite weird iRobot things, including a PackBot that flies (for a little bit) and a morphing blobular robot:

I suppose it’s worth pointing out that the weirdest stuff (like in the videos above) is all over a decade old, and you can reasonably ask whether iRobot was that kind of company anymore even before this whole Amazon thing happened. The answer is probably not, since the company has chosen to focus almost exclusively on floor-care robots. But even there we’ve seen consistent innovation in hardware and software that pretty much every floor-care robot company seems to then pick up on about a year later. This is not to say that other floor-care robots can’t innovate, but it’s undeniable that iRobot has been a driving force behind that industry. Will that continue? I really hope so.

Background: Robots are increasingly used as interaction partners with humans. Social robots are designed to follow expected behavioral norms when engaging with humans and are available with different voices and even accents. Some studies suggest that people prefer robots to speak in the user’s dialect, while others indicate a preference for different dialects.

Methods: Our study examined the impact of the Berlin dialect on perceived trustworthiness and competence of a robot. One hundred and twenty German native speakers (Mage = 32 years, SD = 12 years) watched an online video featuring a NAO robot speaking either in the Berlin dialect or standard German and assessed its trustworthiness and competence.

Results: We found a positive relationship between participants’ self-reported Berlin dialect proficiency and trustworthiness in the dialect-speaking robot. Only when controlled for demographic factors, there was a positive association between participants’ dialect proficiency, dialect performance and their assessment of robot’s competence for the standard German-speaking robot. Participants’ age, gender, length of residency in Berlin, and device used to respond also influenced assessments. Finally, the robot’s competence positively predicted its trustworthiness.

Discussion: Our results inform the design of social robots and emphasize the importance of device control in online experiments.



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Cybathlon Challenges: 2 February 2024, ZURICHEurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPANRoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS

Enjoy today’s videos!

Made from beautifully fabricated steel and eight mobile arms, medusai can play percussion and strings with human musicians, dance with human dancers, and move in time to multiple human observers. It uses AI-driven computer vision to know what human observers are doing and responds accordingly through snake gestures, music, and light.

If this seems a little bit unsettling, that’s intentional! The project was designed to explore the concepts of trust and risk in the context of robots, and of using technology to influence emotion.

[ medusai ] via [ Georgia Tech ]

Thanks, Gil!

On 19 April 2021, NASA’s Ingenuity Mars Helicopter made history when it completed the first powered, controlled flight on the Red Planet. It flew for the last time on 18 January 2024.

[ NASA JPL ]

Teleoperation plays a crucial role in enabling robot operations in challenging environments, yet existing limitations in effectiveness and accuracy necessitate the development of innovative strategies for improving teleoperated tasks. The work illustrated in this video introduces a novel approach that utilizes mixed reality and assistive autonomy to enhance the efficiency and precision of humanoid robot teleoperation.

Sometimes all it takes is one good punch, and then you can just collapse.

[ Paper ] via [ IHMC ]

Thanks, Robert!

The new Dusty Robotics FieldPrinter 2 enhances on-site performance and productivity through its compact design and extended capabilities. Building upon the success of the first-generation FieldPrinter, which has printed over 91 million square feet of layout, the FieldPrint Platform incorporates lessons learned from years of experience in the field to deliver an optimized experience for all trades on site.

[ Dusty Robotics ]

Quadrupedal robots have emerged as a cutting-edge platform for assisting humans, finding applications in tasks related to inspection and exploration in remote areas. Nevertheless, their floating base structure renders them susceptible to failure in cluttered environments, where manual recovery by a human operator may not always be feasible. In this study, we propose a robust all-terrain recovery policy to facilitate rapid and secure recovery in cluttered environments.

[ DreamRiser ]

The work that Henry Evans is doing with Stretch (along with Hello Robot and Maya Cakmak’s lab at the University of Washington) will be presented at Humanoids this spring.

[ UW HCRL ]

Thanks, Stefan!

I like to imagine that these are just excerpts from one very long walk that Digit took around San Francisco.

[ Hybrid Robotics Lab ]

Boxing, drumming, stacking boxes, and various other practices...those are the daily teleoperation testing of our humanoid robot. Collaborating with engineers, our humanoid robots collect real-world data from teleoperation for learning to iterate control algorithms.

[ LimX Dynamics ]

The OpenDR project aims to develop a versatile and open tool kit for fundamental robot functions, using deep learning to enhance their understanding and decision-making abilities. The primary objective is to make robots more intelligent, particularly in critical areas like health care, agriculture, and production. In the health care setting, the TIAGo robot is deployed to offer assistance and support within a health care facility.

[ OpenDR ] via [ PAL Robotics ]

[ ARCHES ]

Christoph Bartneck gives a talk entitled “Social robots: The end of the beginning or the beginning of the end?”

[ Christoph Bartneck ]

Professor Michael Jordan offers his provocative thoughts on the blending of AI and economics and takes us on a tour of Trieste, a beautiful and grand city in northern Italy.

[ Berkeley ]



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Cybathlon Challenges: 2 February 2024, ZURICHEurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCEICRA 2024: 13–17 May 2024, YOKOHAMA, JAPANRoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS

Enjoy today’s videos!

Made from beautifully fabricated steel and eight mobile arms, medusai can play percussion and strings with human musicians, dance with human dancers, and move in time to multiple human observers. It uses AI-driven computer vision to know what human observers are doing and responds accordingly through snake gestures, music, and light.

If this seems a little bit unsettling, that’s intentional! The project was designed to explore the concepts of trust and risk in the context of robots, and of using technology to influence emotion.

[ medusai ] via [ Georgia Tech ]

Thanks, Gil!

On 19 April 2021, NASA’s Ingenuity Mars Helicopter made history when it completed the first powered, controlled flight on the Red Planet. It flew for the last time on 18 January 2024.

[ NASA JPL ]

Teleoperation plays a crucial role in enabling robot operations in challenging environments, yet existing limitations in effectiveness and accuracy necessitate the development of innovative strategies for improving teleoperated tasks. The work illustrated in this video introduces a novel approach that utilizes mixed reality and assistive autonomy to enhance the efficiency and precision of humanoid robot teleoperation.

Sometimes all it takes is one good punch, and then you can just collapse.

[ Paper ] via [ IHMC ]

Thanks, Robert!

The new Dusty Robotics FieldPrinter 2 enhances on-site performance and productivity through its compact design and extended capabilities. Building upon the success of the first-generation FieldPrinter, which has printed over 91 million square feet of layout, the FieldPrint Platform incorporates lessons learned from years of experience in the field to deliver an optimized experience for all trades on site.

[ Dusty Robotics ]

Quadrupedal robots have emerged as a cutting-edge platform for assisting humans, finding applications in tasks related to inspection and exploration in remote areas. Nevertheless, their floating base structure renders them susceptible to failure in cluttered environments, where manual recovery by a human operator may not always be feasible. In this study, we propose a robust all-terrain recovery policy to facilitate rapid and secure recovery in cluttered environments.

[ DreamRiser ]

The work that Henry Evans is doing with Stretch (along with Hello Robot and Maya Cakmak’s lab at the University of Washington) will be presented at Humanoids this spring.

[ UW HCRL ]

Thanks, Stefan!

I like to imagine that these are just excerpts from one very long walk that Digit took around San Francisco.

[ Hybrid Robotics Lab ]

Boxing, drumming, stacking boxes, and various other practices...those are the daily teleoperation testing of our humanoid robot. Collaborating with engineers, our humanoid robots collect real-world data from teleoperation for learning to iterate control algorithms.

[ LimX Dynamics ]

The OpenDR project aims to develop a versatile and open tool kit for fundamental robot functions, using deep learning to enhance their understanding and decision-making abilities. The primary objective is to make robots more intelligent, particularly in critical areas like health care, agriculture, and production. In the health care setting, the TIAGo robot is deployed to offer assistance and support within a health care facility.

[ OpenDR ] via [ PAL Robotics ]

[ ARCHES ]

Christoph Bartneck gives a talk entitled “Social robots: The end of the beginning or the beginning of the end?”

[ Christoph Bartneck ]

Professor Michael Jordan offers his provocative thoughts on the blending of AI and economics and takes us on a tour of Trieste, a beautiful and grand city in northern Italy.

[ Berkeley ]



The Ingenuity Mars Helicopter made its 72nd and final flight on 18 January. “While the helicopter remains upright and in communication with ground controllers,” NASA’s Jet Propulsion Lab said in a press release this afternoon, “imagery of its Jan. 18 flight sent to Earth this week indicates one or more of its rotor blades sustained damage during landing, and it is no longer capable of flight.” That’s what you’re seeing in the picture above: the shadow of a broken tip of one of the helicopter’s four two-foot long carbon fiber rotor blades. NASA is assuming that at least one blade struck the Martian surface during a “rough landing,” and this is not the kind of damage that will allow the helicopter to get back into the air. Ingenuity’s mission is over.


The Perseverance rover took this picture of Ingenuity on on Aug. 2, 2023, just before flight 54.NASA/JPL-Caltech/ASU/MSSS

NASA held a press conference earlier this evening to give as much information as they can about exactly what happened to Ingenuity, and what comes next. First, here’s a summary from the press release:

Ingenuity’s team planned for the helicopter to make a short vertical flight on Jan. 18 to determine its location after executing an emergency landing on its previous flight. Data shows that, as planned, the helicopter achieved a maximum altitude of 40 feet (12 meters) and hovered for 4.5 seconds before starting its descent at a velocity of 3.3 feet per second (1 meter per second).

However, about 3 feet (1 meter) above the surface, Ingenuity lost contact with the rover, which serves as a communications relay for the rotorcraft. The following day, communications were reestablished and more information about the flight was relayed to ground controllers at NASA JPL. Imagery revealing damage to the rotor blade arrived several days later. The cause of the communications dropout and the helicopter’s orientation at time of touchdown are still being investigated.

While NASA doesn’t know for sure what happened, they do have some ideas based on the cause of the emergency landing during the previous flight, Flight 71. “[This location] is some of the hardest terrain we’ve ever had to navigate over,” said Teddy Tzanetos, Ingenuity Project Manager at NASA JPL, during the NASA press conference. “It’s very featureless—bland, sandy terrain. And that’s why we believe that during Flight 71, we had an emergency landing. She was flying over the surface and was realizing that there weren’t too many rocks to look at or features to navigate from, and that’s why Ingenuity called an emergency landing on her own.”

Ingenuity uses a downward-pointing VGA camera running at 30hz for monocular feature tracking, and compares the apparent motion of distinct features between frames to determine its motion over the ground. This optical flow technique is used for drones (and other robots) on Earth too, and it’s very reliable, as long as you have enough features to track. Where it starts to go wrong is when your camera is looking at things that are featureless, which is why consumer drones will sometimes warn you about unexpected behavior when flying over water, and why robotics labs often have bizarre carpets and wallpaper: the more features, the better. On Mars, Ingenuity has been reliably navigating by looking for distinctive features like rocks, but flying over a featureless expanse of sand caused serious problems, as Ingenuity’s Chief Pilot Emeritus Håvard Grip explained to us during today’s press conference:

The way a system like this works is by looking at the consensus of [the features] it sees, and then throwing out the things that don’t really agree with the consensus. The danger is when you run out of features, when you don’t have very many features to navigate on, and you’re not really able to establish what that consensus is and you end up tracking the wrong kinds of features, and that’s when things can get off track.

This view from Ingenuity’s navigation camera during flight 70 (on December 22) shows areas of nearly featureless terrain that would cause problems during flights 71 and 72.NASA/JPL-Caltech

After the Flight 71 emergency landing, the team decided to try a “pop-up” flight next: it was supposed to be about 30 seconds in the air, just straight up to 12 meters and then straight down as a check-out of the helicopter’s systems. As Ingenuity was descending, just before landing, there was a loss of communications with the helicopter. “We have reason to believe that it was facing the same featureless sandy terrain challenges [as in the previous flight],” said Tzanetos. “And because of the navigation challenges, we had a rotor strike with the surface that would have resulted in a power brownout which caused the communications loss.” Grip describes what he thinks happened in more detail:

Some of this is speculation because of the sparse telemetry that we have, but what we see in the telemetry is that coming down towards the last part of the flight, on the sand, when we’re closing in on the ground, the helicopter relatively quickly starts to think that it’s moving horizontally away from the landing target. It’s likely that it made an aggressive maneuver to try to correct that right upon landing. And that would have accounted for a sideways motion and tilt of the helicopter that could have led to either striking the blade to the ground and then losing power, or making a maneuver that was aggressive enough to lose power before touching down and striking the blade, we don’t know those details yet. We may never know. But we’re trying as hard as we can with the data that we have to figure out those details.

When the Ingenuity team tried reestablishing contact with the helicopter the next sol, “she was right there where we expected her to be,” Tzanetos said. “Solar panel currents were looking good, which indicated that she was upright.” In fact, everything was “green across the board.” That is, until the team started looking through the images from Ingenuity’s navigation camera, and spotted the shadow of the damaged lower blade. Even if that’s the only damage to Ingenuity, the whole rotor system is now both unbalanced and producing substantially less lift, and further flights will be impossible.

A closeup of the shadow of the damaged blade tip.NASA/JPL-Caltech

There’s always that piece in the back of your head that’s getting ready every downlink—today could be the last day, today could be the last day. So there was an initial moment, obviously, of sadness, seeing that photo come down and pop on screen, which gives us certainty of what occurred. But that’s very quickly replaced with happiness and pride and a feeling of celebration for what we’ve pulled off. Um, it’s really remarkable the journey that she’s been on and worth celebrating every single one of those sols. Around 9pm tonight Pacific time will mark 1000 sols that Ingenuity has been on the surface since her deployment from the Perseverance rover. So she picked a very fitting time to come to the end of her mission. —Teddy Tzanetos

The Ingenuity team is guessing that there’s damage to more than one of the helicopter’s blades; the blades spin fast enough that if one hit the surface, others likely did too. The plan is to attempt to slowly spin the blades to bring others into view to try and collect more information. It sounds unlikely that NASA will divert the Perseverance rover to give Ingenuity a closer look; while continuing on its sincere mission the rover will come between 200 and 300 meters of Ingenuity and will try to take some pictures, but that’s likely too far away for a good quality image.

Perseverance watches Ingenuity take off on flight 47 on March 14, 2023.NASA/JPL-Caltech/ASU/MSSS

As a tech demo, Ingenuity’s entire reason for existence was to push the boundaries of what’s possible. And as Grip explains, even in its last flight, the little helicopter was doing exactly that, going above and beyond and trying newer and riskier things until it got as far as it possibly could:

Overall, the way that Ingenuity has navigated using features of terrain has been incredibly successful. We didn’t design this system to handle this kind of terrain, but nonetheless it’s sort of been invincible until this moment where we flew in this completely bland terrain where you just have nothing to really hold on to. So there are some lessons in that for us: we now know that that particular kind of terrain can be a trap for a system like this. Backing up when encountering this featureless terrain is a functionality that a future helicopter could be equipped with. And then there are solutions like having a higher resolution camera, which would have likely helped mitigate this situation. But it’s all part of this tech demo, where we equipped this helicopter to do at most five flights in a pre-scouted area and it’s gone on to do so much more than that. And we just worked it all the way up to the line, and then just tipped it right over the line to where it couldn’t handle it anymore.

Arguably, Ingenuity’s most important contribution has been showing that it’s not just possible, but practical and valuable to have rotorcraft on Mars. “I don’t think we’d be talking about sample recovery helicopters if Ingenuity didn’t fly, period, and if it hadn’t survived for as long as it has,” Teddy Tzanetos told us after Ingenuity’s 50th flight. And it’s not just the sample return mission: JPL is also developing a much larger Mars Science Helicopter, which will owe its existence to Ingenuity’s success.

Nearly three years on Mars. 128 minutes and 11 miles of flight in the Martian skies. “I look forward to the day that one of our astronauts brings home Ingenuity and we can all visit it in the Smithsonian,” said Director of JPL Laurie Leshin at the end of today’s press conference.

I’ll be first in line.

We’ve written extensively about Ingenuity, including in-depth interviews with both helicopter and rover team members, and they’re well worth re-reading today. Thanks, Ingenuity. You did well.


What Flight 50 Means for the Ingenuity Mars Helicopter

Team lead Teddy Tzanetos on the helicopter’s milestone aerial mission


Mars Helicopter Is Much More Than a Tech Demo

A Mars rover driver explains just how much of a difference the little helicopter scout is making to Mars exploration


Ingenuity’s Chief Pilot Explains How to Fly a Helicopter on Mars

Simulation is the secret to flying a helicopter on Mars


How NASA Designed a Helicopter That Could Fly Autonomously on Mars

The Perseverance rover’s Mars Helicopter (Ingenuity) will take off, navigate, and land on Mars without human intervention

Pages