Feed aggregator

Background: Clinical exoskeletal-assisted walking (EAW) programs for individuals with spinal cord injury (SCI) have been established, but many unknown variables remain. These include addressing staffing needs, determining the number of sessions needed to achieve a successful walking velocity milestone for ambulation, distinguishing potential achievement goals according to level of injury, and deciding the number of sessions participants need to perform in order to meet the Food and Drug Administration (FDA) criteria for personal use prescription in the home and community. The primary aim of this study was to determine the number of sessions necessary to achieve adequate EAW skills and velocity milestones, and the percentage of participants able to achieve these skills by 12 sessions and to determine the skill progression over the course of 36 sessions.

Methods: A randomized clinical trial (RCT) was conducted across three sites, in persons with chronic (≥6 months) non-ambulatory SCI. Eligible participants were randomized (within site) to either the EAW arm first (Group 1), three times per week for 36 sessions, striving to be completed in 12 weeks or the usual activity arm (UA) first (Group 2), followed by a crossover to the other arm for both groups. The 10-meter walk test seconds (s) (10MWT), 6-min walk test meters (m) (6MWT), and the Timed-Up-and-Go (s) (TUG) were performed at 12, 24, and 36 sessions. To test walking performance in the exoskeletal devices, nominal velocities and distance milestones were chosen prior to study initiation, and were used for the 10MWT (≤ 40s), 6MWT (≥80m), and TUG (≤ 90s). All walking tests were performed with the exoskeletons.

Results: A total of 50 participants completed 36 sessions of EAW training. At 12 sessions, 31 (62%), 35 (70%), and 36 (72%) participants achieved the 10MWT, 6MWT, and TUG milestones, respectively. By 36 sessions, 40 (80%), 41 (82%), and 42 (84%) achieved the 10MWT, 6MWT, and TUG criteria, respectively.

Conclusions: It is feasible to train chronic non-ambulatory individuals with SCI in performance of EAW sufficiently to achieve reasonable mobility skill outcome milestones.

To investigate how a robot's use of feedback can influence children's engagement and support second language learning, we conducted an experiment in which 72 children of 5 years old learned 18 English animal names from a humanoid robot tutor in three different sessions. During each session, children played 24 rounds in an “I spy with my little eye” game with the robot, and in each session the robot provided them with a different type of feedback. These feedback types were based on a questionnaire study that we conducted with student teachers and the outcome of this questionnaire was translated to three within-design conditions: (teacher) preferred feedback, (teacher) dispreferred feedback and no feedback. During the preferred feedback session, among others, the robot varied his feedback and gave children the opportunity to try again (e.g., “Well done! You clicked on the horse.”, “Too bad, you pressed the bird. Try again. Please click on the horse.”); during the dispreferred feedback the robot did not vary the feedback (“Well done!”, “Too bad.”) and children did not receive an extra attempt to try again; and during no feedback the robot did not comment on the children's performances at all. We measured the children's engagement with the task and with the robot as well as their learning gain, as a function of condition. Results show that children tended to be more engaged with the robot and task when the robot used preferred feedback than in the two other conditions. However, preferred or dispreferred feedback did not have an influence on learning gain. Children learned on average the same number of words in all conditions. These findings are especially interesting for long-term interactions where engagement of children often drops. Moreover, feedback can become more important for learning when children need to rely more on feedback, for example, when words or language constructions are more complex than in our experiment. The experiment's method, measurements and main hypotheses were preregistered.

The vast majority of drones are rotary-wing systems (like quadrotors), and for good reason: They’re cheap, they’re easy, they scale up and down well, and we’re getting quite good at controlling them, even in very challenging environments. For most applications, though, drones lose out to birds and their flapping wings in almost every way—flapping wings are very efficient, enable astonishing agility, and are much safer, able to make compliant contact with surfaces rather than shredding them like a rotor system does. But flapping wing have their challenges too: Making flapping-wing robots is so much more difficult than just duct taping spinning motors to a frame that, with a few exceptions, we haven’t seen nearly as much improvement as we have in more conventional drones.

In Science Robotics last week, a group of roboticists from Singapore, Australia, China, and Taiwan described a new design for a flapping-wing robot that offers enough thrust and control authority to make stable transitions between aggressive flight modes—like flipping and diving—while also being able to efficiently glide and gently land. While still more complex than a quadrotor in both hardware and software, this ornithopter’s advantages might make it worthwhile.

One reason that making a flapping-wing robot is difficult is because the wings have to move back and forth at high speed while electric motors spin around and around at high speed. This requires a relatively complex transmission system, which (if you don’t do it carefully), leads to weight penalties and a significant loss of efficiency. One particular challenge is that the reciprocating mass of the wings tends to cause the entire robot to flex back and forth, which alternately binds and disengages elements in the transmission system.

The researchers’ new ornithopter design mitigates the flexing problem using hinges and bearings in pairs. Elastic elements also help improve efficiency, and the ornithopter is in fact more efficient with its flapping wings than it would be with a rotary propeller-based propulsion system. Its thrust exceeds its 26-gram mass by 40 percent, which is where much of the aerobatic capability comes from. And one of the most surprising findings of this paper was that flapping-wing robots can actually be more efficient than propeller-based aircraft.

One of the most surprising findings of this paper was that flapping-wing robots can actually be more efficient than propeller-based aircraft

It’s not just thrust that’s a challenge for ornithopters: Control is much more complex as well. Like birds, ornithopters have tails, but unlike birds, they have to rely almost entirely on tail control authority, not having that bird-level of control over fine wing movements. To make an acrobatic level of control possible, the tail control surfaces on this ornithopter are huge—the tail plane area is 35 percent of the wing area. The wings can also provide some assistance in specific circumstances, as by combining tail control inputs with a deliberate stall of the things to allow the ornithopter to execute rapid flips.

With the ability to take off, hover, glide, land softly, maneuver acrobatically, fly quietly, and interact with its environment in a way that’s not (immediately) catastrophic, flapping-wing drones easily offer enough advantages to keep them interesting. Now that ornithopters been shown to be even more efficient than rotorcraft, the researchers plan to focus on autonomy with the goal of moving their robot toward real-world usefulness.

“Efficient flapping wing drone arrests high-speed flight using post-stall soaring,” by Yao-Wei Chin, Jia Ming Kok, Yong-Qiang Zhu, Woei-Leong Chan, Javaan S. Chahl, Boo Cheong Khoo, and Gih-Keong Lau from from Nanyang Technological University in Singapore, National University of Singapore, Defence Science and Technology Group in Canberra, Australia, Qingdao University of Technology in Shandong, China, University of South Australia in Mawson Lakes, and National Chiao Tung University in Hsinchu, Taiwan, was published in Science Robotics.