IEEE Spectrum Robotics

IEEE Spectrum Robotics recent content
Subscribe to IEEE Spectrum Robotics feed

Most of us have a fairly rational expectation that if we put our cellphone down somewhere, it will stay in that place until we pick it up again. Normally, this is exactly what you’d want, but there are exceptions, like when you put your phone down in not quite the right spot on a wireless charging pad without noticing, or when you’re lying on the couch and your phone is juuust out of reach no matter how much you stretch.

Roboticists from the Biorobotics Laboratory at Seoul National University in South Korea have solved both of these problems, and many more besides, by developing a cellphone case with little robotic legs, endowing your phone with the ability to skitter around autonomously. And unlike most of the phone-robot hybrids we’ve seen in the past, this one actually does look like a legit case for your phone.

CaseCrawler is much chunkier than a form-fitting case, but it’s not offensively bigger than one of those chunky battery cases. It’s only 24 millimeters thick (excluding the motor housing), and the total weight is just under 82 grams. Keep in mind that this case is in fact an entire robot, and also not at all optimized for being an actual phone case, so it’s easy to imagine how it could get a lot more svelte—for example, it currently includes a small battery that would be unnecessary if it instead tapped into the phone for power.

The technology inside is pretty amazing, since it involves legs that can retract all the way flat while also supporting a significant amount of weight. The legs work sort of like your legs do, in that there’s a knee joint that can only bend one way. To move the robot forward, a linkage (attached to a motor through a gearbox) pushes the leg back against the ground, as the knee joint keeps the leg straight. On the return stroke, the joint allows the leg to fold, making it compliant so that it doesn’t exert force on the ground. The transmission that sends power from the gearbox to the legs is just 1.5-millimeter thick, but this incredibly thin and lightweight mechanical structure is quite powerful. A non-phone case version of the robot, weighing about 23 g, is able to crawl at 21 centimeters per second while carrying a payload of just over 300 g. That’s more than 13 times its body weight.

The researchers plan on exploring how robots like these could make other objects movable that would otherwise not be. They’d also like to add some autonomy, which (at least for the phone case version) could be as straightforward as leveraging the existing sensors on the phone. And as to when you might be able to buy one of these—we’ll keep you updated, but the good news is that it seems to be fundamentally inexpensive enough that it may actually crawl out of the lab one day.

“CaseCrawler: A Lightweight and Low-Profile Crawling Phone Case Robot,” by Jongeun Lee, Gwang-Pil Jung, Sang-Min Baek, Soo-Hwan Chae, Sojung Yim, Woongbae Kim, and Kyu-Jin Cho from Seoul National University, appears in the October issue of IEEE Robotics and Automation Letters. < Back to IEEE Journal Watch

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference] CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference] ICUAS 2020 – September 1-4, 2020 – Athens, Greece ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference] IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA ICSR 2020 – November 14-16, 2020 – Golden, Co., USA

Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s coming together—literally! Japan’s giant Gundam appears nearly finished and ready for its first steps. In a recent video, Gundam Factory Yokohama, which is constructing the 18-meter-tall, 25-ton walking robot, provided an update on the project. The video shows the Gundam getting its head attached—after being blessed by Shinto priests. 

In the video update, they say the project is “steadily progressing” and further details will be announced around the end of September.

[ Gundam Factory Yokohama ]

Creating robots with emotional personalities will transform the usability of robots in the real-world. As previous emotive social robots are mostly based on statically stable robots whose mobility is limited, this work develops an animation to real-world pipeline that enables dynamic bipedal robots that can twist, wiggle, and walk to behave with emotions.

So that’s where Cassie’s eyes go.

[ Berkeley ]

Now that the DARPA SubT Cave Circuit is all virtual, here’s a good reminder of how it’ll work.

[ SubT ]

Since July 20, anyone 11+ years of age must wear a mask in closed public places in France. This measure also is highly recommended in many European, African and Persian Gulf countries. To support businesses and public places, SoftBank Robotics Europe unveils a new feature with Pepper: AI Face Mask Detection.

[ Softbank ]

University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.

[ University of Michigan ]

Suzumori Endo Lab, Tokyo Tech has created various types of IPMC robots. Those robots are fabricated by novel 3D fabrication methods.

[ Suzimori Endo Lab ]

The most explode-y of drones manages not to explode this time.

[ SpaceX ]

At Amazon, we’re constantly innovating to support our employees, customers, and communities as effectively as possible. As our fulfillment and delivery teams have been hard at work supplying customers with items during the pandemic, Amazon’s robotics team has been working behind the scenes to re-engineer bots and processes to increase safety in our fulfillment centers.

While some folks are able to do their jobs at home with just a laptop and internet connection, it’s not that simple for other employees at Amazon, including those who spend their days building and testing robots. Some engineers have turned their homes into R&D labs to continue building these new technologies to better serve our customers and employees. Their creativity and resourcefulness to keep our important programs going is inspiring.

[ Amazon ]

Australian Army soldiers from 2nd/14th Light Horse Regiment (Queensland Mounted Infantry) demonstrated the PD-100 Black Hornet Nano unmanned aircraft vehicle during a training exercise at Shoalwater Bay Training Area, Queensland, on 4 May 2018.

This robot has been around for a long time—maybe 10 years or more? It makes you wonder what the next generation will look like, and if they can manage to make it even smaller.

[ FLIR ]

Event-based cameras are bio-inspired vision sensors whose pixels work independently from each other and respond asynchronously to brightness changes, with microsecond resolution. Their advantages make it possible to tackle challenging scenarios in robotics, such as high-speed and high dynamic range scenes. We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.

[ Paper ] via [ HKUST ]

Emys can help keep kindergarteners sitting still for a long time, which is not small feat! 

[ Emys ]

Introducing the RoboMaster EP Core, an advanced educational robot that was built to take learning to the next level and provides an all-in-one solution for STEAM-based classrooms everywhere, offering AI and programming projects for students of all ages and experience levels.

[ DJI ]

This Dutch food company Heemskerk uses ABB robots to automate their order picking. Their new solution reduces the amount of time the fresh produce spends in the supply chain, extending its shelf life, minimizing wastage, and creating a more sustainable solution for the fresh food industry.

[ ABB ]

This week’s episode of Pass the Torque features NASA’s Satellite Servicing Projects Division (NExIS) Robotics Engineer, Zakiya Tomlinson.

[ NASA ]

Massachusetts has been challenging Silicon Valley as the robotics capital of the United States. They’re not winning, yet. But they’re catching up.

[ MassTech ]

San Francisco-based Formant is letting anyone remotely take its Spot robot for a walk. Watch The Robot Report editors, based in Boston, take Spot for a walk around Golden Gate Park.

You can apply for this experience through Formant at the link below.

[ Formant ] via [ TRR ]

Thanks Steve!

An Institute for Advanced Study Seminar on “Theoretical Machine Learning,” featuring Peter Stone from UT Austin.

For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk begins by introducing Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. It then introduces two new algorithms for imitation learning from observation that enable a robot to mimic demonstrated skills from state-only trajectories, without any knowledge of the actions selected by the demonstrator. Connections to theoretical advances in off-policy reinforcement learning will be highlighted throughout.

[ IAS ]

When designing a mobility system for a robot, the goal is usually to come up with one single system that allows your robot to do everything that you might conceivably need it to do, whether that’s walking, running, rolling, swimming, or some combination of those things. This is not at all how humans do it, though: If humans followed the robot model, we’d be walking around wearing some sort of horrific combination of sneakers, hiking boots, roller skates, skis, and flippers on our feet. Instead, we do the sensible thing, and optimize our mobility system for different situations by putting on different pairs of shoes. 

At ICRA, researchers from Georgia Tech demonstrated how this shoe swapping could be applied to robots. They haven’t just come up with a robot that can use “swappable propulsors”—as they call the robot’s shoes—but crucially, they’ve managed to get it to the swapping all by itself with a cute little robot arm.

Nifty, right? The robot’s shoes, er, propulsors, fit snugly into t-shaped slots on the wheels, and stay secure through a combination of geometric orientation and permanent magnets. This results in a fairly simple attachment system with high holding force but low detachment force as long as the manipulator jiggers the shoes in the right way. It’s all open loop for now, and it does take a while—in real time, swapping a single propulsor takes about 13 seconds.

Even though the propulsor swapping capability does require the robot to carry the propulsors themselves around, and it means that it has to carry a fairly high DoF manipulator around as well, the manipulator at least can be used for all kinds of other useful things. Many mobile robots have manipulators of one sort or another already, although they’re usually intended for world interaction rather than self-modification. With some adjustments to structure or degrees of freedom, mobile manipulators could potentially leverage swappable propulsors as well.

In case you’re wondering whether this additional complexity is all worthwhile, in the sense that a robot with permanent wheel-legs can do everything that this robot does without needing to worry about an arm or propulsor swapping, it turns out that it makes a substantial difference to efficiency. In its wheeled configuration on flat concrete, the robot had a cost of transport of 0.97, which the researchers say “represents a roughly three-fold decrease when compared to the legged results on concrete.” And of course the idea is that eventually, the robot will be able to handle a much wider variety of terrain, thanks to an on-board stockpile of different kinds of propulsors. 

Photos: Georgia Tech The robot uses a manipulator mounted on its back to retrieve the propulsors from a compartment and attach them to its wheels. 

For more details, we connected with first author Raymond Kim via email.

IEEE Spectrum: Humans change shoes to do different things all the time—why do you think this hasn’t been applied to robots before?

Raymond Kim: In our view, there are two reasons for this. First, to date, most vehicle-mounted manipulators have been primarily designed to sense and interact with the external world rather than the robot. Therefore, vehicle-mounted manipulators may not be able to access all parts of the robot or sense interactions between the arm and the vehicle body. Second, locomotion involves relatively high forces between the propulsion system and the ground. Vehicle-mounted manipulators have historically been lightweight in order to minimize size, mass, and power consumption. As a result, such manipulators cannot impose large forces. Therefore, any swappable propulsor must be both capable of bearing large locomotive loads and also easily adapted with low manipulation forces. These two requirements are often at odds with each other, which creates a challenging design problem. Our ICRA presentation had a failure video that illustrated what happens when the design is not sufficiently robust.

How much autonomy is there in the system right now?

Currently, autonomy is limited to the trajectory tracking of the manipulator during the process of changing shoes/propulsors. We initiate the change of shoe based on human command and the shoe changing operation is a scripted trajectory. For a fully autonomous version, we would need a path-planning algorithm that is able to identify terrain in order to determine when to adapt.  This could be done with onboard sensing or a pre-loaded map. 

Is this concept primarily useful for modifying rotary motors, or could it have benefits for other kinds of mobility systems as well?

We envision that this concept can be applied to a broad range of locomotion systems. While we have focused on rotary actuators because of their common use, we imagine changing the end-effector on a linear actuator in a similar manner. Also, these methods could be used to modify passive components such as adding a tail to the back of a robot, a plow to the front, or redistributing the mass of the system.

Photo: Georgia Tech Currently the robot’s propulsors are designed for rough terrain, but the researchers are exploring different shapes that can help with mobility in snow, sand, and water.

What other propulsors do you think your robot might benefit from?

We are very excited to explore a broad range of propulsors. For terrestrial locomotion, we think more tailored adaptations for snow or sand would be valuable. These may involve modifying the wheels by adding spikes or paddles. Additionally, we were originally motivated by naval operations. Navy personnel can swim to shore using flippers and then switch to boots to operate on land. This switch can dramatically improve locomotive efficiency. Imagine trying to swim in boots, or climbing stairs with flippers! We are looking forward to similar designs that switch between fins and wheels/legs for amphibious behaviors.

What are you working on next?

Our immediate focus is on improving the performance of our existing ground vehicle. We are adding sensing capability to the arm so that swapping propulsors can be performed faster and with greater robustness. In addition, we are looking to tailor motion planning algorithms with the unique features of our vehicle. Finally, we are interested in examining other types of adaptations. This can involve swappable propulsors or other changes to the vehicle properties. Manipulation creates a great deal of flexibility, and we are broadly interested in how new types of vehicles can be designed to take advantage of manipulation based adaptation. 

“Using Manipulation to Enable Adaptive Ground Mobility,” by Raymond Kim, Alex Debate, Stephen Balakirsky, and Anirban Mazumdar from Georgia Tech, was presented at ICRA 2020.

[ Georgia Tech ]