Feed aggregator



Picture, if you will, a cargo rocket launching into space and docking on the International Space Station. The rocket maneuvers up to the station and latches on with an airtight seal so that supplies can be transferred. Now imagine a miniaturized version of that process happening inside your body.

Researchers today announced that they have built a robotic system capable of this kind of supply drop, and which functions entirely inside the gut. The system involves an insulin delivery robot that is surgically implanted in the abdomen, and swallowable magnetic capsules that resupply the robot with insulin.

The robot's developers, based in Italy, tested their system in three diabetic pigs. The system successfully controlled the pigs' blood glucose levels for several hours, according to results published today in the journal Science Robotics.

"Maybe it's scary to think about a docking station inside the body, but it worked," says Arianna Menciassi, an author of the paper and a professor of biomedical robotics and bioengineering at Sant'Anna School of Advanced Studies in Pisa, Italy.

In her team's system, a device the size of a flip phone is surgically implanted along the abdominal wall interfaced with the small intestine. The device delivers insulin into fluid in that space. When the implant's reservoir runs low on medication, a magnetic, insulin-filled capsule shuttles in to refill it.

Here's how the refill procedure would theoretically work in humans: The patient swallows the capsule just like a pill, and it moves through the digestive system naturally until it reaches a section of the small intestine where the implant has been placed. Using magnetic fields, the implant draws the capsule toward it, rotates it, and docks it in the correct position. The implant then punches the capsule with a retractable needle and pumps the insulin into its reservoir. The needle must also punch through a thin layer of intestinal tissue to reach the capsule.

In all, the implant contains four actuators that control the docking, needle punching, reservoir volume and aspiration, and pump. The motor responsible for docking rotates a magnet to maneuver the capsule into place. The design was inspired by industrial clamping systems and pipe-inspecting robots, the authors say.

After the insulin is delivered, the implant releases the capsule, allowing it to continue naturally through the digestive tract to be excreted from the body. The magnetic fields that control docking and release of the capsule are controlled wirelessly by an external programming device, and can be turned on or off. The implant's battery is wirelessly charged by an external device.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day. Insulin pumps are available commercially, but these require external hardware that deliver the drug through a tube or needle that penetrates the body. Implantable insulin pumps are also available, but those devices have to be refilled by a tube that protrudes from the body, inviting bacterial infections; those systems have not proven popular.

A fully implantable system refilled by a pill would eliminate the need for protruding tubes and hardware, says Menciassi. Such a system could prove useful in delivering drugs for other diseases too, such as chemotherapy to people with ovarian, pancreatic, gastric, and colorectal cancers, the authors report.

As a next step, the authors are working on sealing the implanted device more robustly. "We observed in some pigs that [bodily] fluids are entering inside the robot," says Menciassi. Some of the leaks are likely occurring during docking when the needle comes out of the implant, she says. The leaks did not occur when the team previously tested the device in water, but the human body, she notes, is much more complex.



Picture, if you will, a cargo rocket launching into space and docking on the International Space Station. The rocket maneuvers up to the station and latches on with an airtight seal so that supplies can be transferred. Now imagine a miniaturized version of that process happening inside your body.

Researchers today announced that they have built a robotic system capable of this kind of supply drop, and which functions entirely inside the gut. The system involves an insulin delivery robot that is surgically implanted in the abdomen, and swallowable magnetic capsules that resupply the robot with insulin.

The robot's developers, based in Italy, tested their system in three diabetic pigs. The system successfully controlled the pigs' blood glucose levels for several hours, according to results published today in the journal Science Robotics.

"Maybe it's scary to think about a docking station inside the body, but it worked," says Arianna Menciassi, an author of the paper and a professor of biomedical robotics and bioengineering at Sant'Anna School of Advanced Studies in Pisa, Italy.

In her team's system, a device the size of a flip phone is surgically implanted along the abdominal wall interfaced with the small intestine. The device delivers insulin into fluid in that space. When the implant's reservoir runs low on medication, a magnetic, insulin-filled capsule shuttles in to refill it.

Here's how the refill procedure would theoretically work in humans: The patient swallows the capsule just like a pill, and it moves through the digestive system naturally until it reaches a section of the small intestine where the implant has been placed. Using magnetic fields, the implant draws the capsule toward it, rotates it, and docks it in the correct position. The implant then punches the capsule with a retractable needle and pumps the insulin into its reservoir. The needle must also punch through a thin layer of intestinal tissue to reach the capsule.

In all, the implant contains four actuators that control the docking, needle punching, reservoir volume and aspiration, and pump. The motor responsible for docking rotates a magnet to maneuver the capsule into place. The design was inspired by industrial clamping systems and pipe-inspecting robots, the authors say.

After the insulin is delivered, the implant releases the capsule, allowing it to continue naturally through the digestive tract to be excreted from the body. The magnetic fields that control docking and release of the capsule are controlled wirelessly by an external programming device, and can be turned on or off. The implant's battery is wirelessly charged by an external device.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day. Insulin pumps are available commercially, but these require external hardware that deliver the drug through a tube or needle that penetrates the body. Implantable insulin pumps are also available, but those devices have to be refilled by a tube that protrudes from the body, inviting bacterial infections; those systems have not proven popular.

A fully implantable system refilled by a pill would eliminate the need for protruding tubes and hardware, says Menciassi. Such a system could prove useful in delivering drugs for other diseases too, such as chemotherapy to people with ovarian, pancreatic, gastric, and colorectal cancers, the authors report.

As a next step, the authors are working on sealing the implanted device more robustly. "We observed in some pigs that [bodily] fluids are entering inside the robot," says Menciassi. Some of the leaks are likely occurring during docking when the needle comes out of the implant, she says. The leaks did not occur when the team previously tested the device in water, but the human body, she notes, is much more complex.



Picture, if you will, a cargo rocket launching into space and docking on the International Space Station. The rocket maneuvers up to the station and latches on with an airtight seal so that supplies can be transferred. Now imagine a miniaturized version of that process happening inside your body.

Researchers today announced that they have built a robotic system capable of this kind of supply drop, and which functions entirely inside the gut. The system involves an insulin delivery robot that is surgically implanted in the abdomen, and swallowable magnetic capsules that resupply the robot with insulin.

The robot's developers, based in Italy, tested their system in three diabetic pigs. The system successfully controlled the pigs' blood glucose levels for several hours, according to results published today in the journal Science Robotics.

"Maybe it's scary to think about a docking station inside the body, but it worked," says Arianna Menciassi, an author of the paper and a professor of biomedical robotics and bioengineering at Sant'Anna School of Advanced Studies in Pisa, Italy.

In her team's system, a device the size of a flip phone is surgically implanted along the abdominal wall interfaced with the small intestine. The device delivers insulin into fluid in that space. When the implant's reservoir runs low on medication, a magnetic, insulin-filled capsule shuttles in to refill it.

Here's how the refill procedure would theoretically work in humans: The patient swallows the capsule just like a pill, and it moves through the digestive system naturally until it reaches a section of the small intestine where the implant has been placed. Using magnetic fields, the implant draws the capsule toward it, rotates it, and docks it in the correct position. The implant then punches the capsule with a retractable needle and pumps the insulin into its reservoir. The needle must also punch through a thin layer of intestinal tissue to reach the capsule.

In all, the implant contains four actuators that control the docking, needle punching, reservoir volume and aspiration, and pump. The motor responsible for docking rotates a magnet to maneuver the capsule into place. The design was inspired by industrial clamping systems and pipe-inspecting robots, the authors say.

After the insulin is delivered, the implant releases the capsule, allowing it to continue naturally through the digestive tract to be excreted from the body. The magnetic fields that control docking and release of the capsule are controlled wirelessly by an external programming device, and can be turned on or off. The implant's battery is wirelessly charged by an external device.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day.

This kind of delivery system could prove useful to people with type 1 diabetes, especially those who must inject insulin into their bodies multiple times a day. Insulin pumps are available commercially, but these require external hardware that deliver the drug through a tube or needle that penetrates the body. Implantable insulin pumps are also available, but those devices have to be refilled by a tube that protrudes from the body, inviting bacterial infections; those systems have not proven popular.

A fully implantable system refilled by a pill would eliminate the need for protruding tubes and hardware, says Menciassi. Such a system could prove useful in delivering drugs for other diseases too, such as chemotherapy to people with ovarian, pancreatic, gastric, and colorectal cancers, the authors report.

As a next step, the authors are working on sealing the implanted device more robustly. "We observed in some pigs that [bodily] fluids are entering inside the robot," says Menciassi. Some of the leaks are likely occurring during docking when the needle comes out of the implant, she says. The leaks did not occur when the team previously tested the device in water, but the human body, she notes, is much more complex.

Collaborative robots (or cobots) are robots that can safely work together or interact with humans in a common space. They gradually become noticeable nowadays. Compliant actuators are very relevant for the design of cobots. This type of actuation scheme mitigates the damage caused by unexpected collision. Therefore, elastic joints are considered to outperform rigid joints when operating in a dynamic environment. However, most of the available elastic robots are relatively costly or difficult to construct. To give researchers a solution that is inexpensive, easily customisable, and fast to fabricate, a newly-designed low-cost, and open-source design of an elastic joint is presented in this work. Based on the newly design elastic joint, a highly-compliant multi-purpose 2-DOF robot arm for safe human-robot interaction is also introduced. The mechanical design of the robot and a position control algorithm are presented. The mechanical prototype is 3D-printed. The control algorithm is a two loops control scheme. In particular, the inner control loop is designed as a model reference adaptive controller (MRAC) to deal with uncertainties in the system parameters, while the outer control loop utilises a fuzzy proportional-integral controller to reduce the effect of external disturbances on the load. The control algorithm is first validated in simulation. Then the effectiveness of the controller is also proven by experiments on the mechanical prototype.

The incorporation of robots in the social fabric of our society has taken giant leaps, enabled by advances in artificial intelligence and big data. As these robots become increasingly adept at parsing through enormous datasets and making decisions where humans fall short, a significant challenge lies in the analysis of robot behavior. Capturing interactions between robots, humans and IoT devices in traditional structures such as graphs poses challenges in the storage and analysis of large data sets in dense graphs generated by frequent activities. This paper proposes a framework that uses the blockchain for the storage of robotic interactions, and the use of sheaf theory for analysis of these interactions. Applications of our framework for social robots and swarm robots incorporating imperfect information and irrationality on the blockchain sheaf are proposed. This work shows the application of such a framework for various blockchain applications on the spectrum of human-robot interaction, and identifies key challenges that arise as a result of using the blockchain for robotic applications.



Boston Dynamics has just posted a couple of new videos showing their Atlas humanoid robot doing some of the most impressive parkour we've yet seen. Let's watch!

Parkour is the perfect sandbox for the Atlas team at Boston Dynamics to experiment with new behaviors. In this video our humanoid robots demonstrate their whole-body athletics, maintaining its balance through a variety of rapidly changing, high-energy activities. Through jumps, balance beams, and vaults, we demonstrate how we push Atlas to its limits to discover the next generation of mobility, perception, and athletic intelligence.

There are a couple of new and exciting things in this video. First, Atlas is doing some serious work with its upper body by vaulting over that bar. It's not supporting its entire weight with one arm, since it's jumping, but it's doing what looks like some fairly complex balancing and weight management using all four of its limbs at once. Most of what we've seen from Atlas up to this point has been lower body focused, and while the robot has used its arms for forward rolls and stuff, those moves have been simpler than what we're seeing here. Aaron Saunders, Boston Dynamics' VP of Engineering, suggested to us earlier this year that the Atlas team would be working on more upper-body stuff, it looks like they're now delivering. We're expecting that Atlas will continue to improve in this direction, and that at some point it'll be able to do the equivalent of a pull-up, which will open up a much wider variety of behaviors.

The second big new thing is that Atlas is now leveraging perception much more heavily, according to Scott Kuindersma, the Atlas team lead at Boston Dynamics, who wrote about it in a blog post:

"Atlas's moves are driven by perception now, and they weren't back then," Kuindersma explains. "For example, the previous floor routine and dance videos were about capturing our ability to create a variety of dynamic moves and chain them together into a routine that we could run over and over again. In that case, the robot's control system still has to make lots of critical adjustments on the fly to maintain balance and posture goals, but the robot was not sensing and reacting to its environment."

In this iteration of parkour, the robot is adapting behaviors in its repertoire based on what it sees. This means the engineers don't need to pre-program jumping motions for all possible platforms and gaps the robot might encounter. Instead, the team creates a smaller number of template behaviors that can be matched to the environment and executed online.

This is a pretty big deal. Without perception, Atlas was running its routines blind—as long as the environment was kept more or less completely static, the robot would do okay, but obviously that's a major limitation. What Atlas is doing in this new video is still somewhat limited, in the sense that it's still relying on template behaviors created by humans rather than doing true dynamic planning, but this represents a lot of progress.

One other thing that's worth paying attention to is how Boston Dynamics thinks of humanoid robots:

"Humanoids are interesting from a couple perspectives," Kuindersma says. "First, they capture our vision of a go-anywhere, do-anything robot of the future. They may not be the best design for any particular task, but if you wanted to build one platform that could perform a wide variety of physical tasks, we already know that a human form factor is capable of doing that."

This tends to be the justification for humanoid robots, along with the idea that you need a humanoid form factor to operate in human environments. But Kuindersma is absolutely right when he says that humanoids may not be the best design for any particular task, and at least in the near term, practical commercial robots tend not to be generalists. Even Boston Dynamic's dog-like robot Spot, with its capable legged mobility, is suited primarily to a narrow range of specific tasks—it's great for situations where legs are necessary, but otherwise it's complex and expensive and wheels often do better. I think it's very important that Boston Dynamics is working towards a go-anywhere, do-anything robot, but it's also important to keep expectations in check, and remember that even robots like Atlas are (I would argue) a decade or more away from this generalist vision.

Meanwhile, Boston Dynamics seems, for better or worse, to be moving away from their habit of surprise posting crazy robot videos with zero explanation. Along with the new parkour video, Boston Dynamics has put together a second behind the scenes video:

Can I just say that I love how absolutely trashed the skins on these robots look? That's how you know good work is getting done.

There's a bunch more detail in this blog post, and we sent Boston Dynamics a couple of questions, too. We'll update this post when we hear back later today.



Boston Dynamics has just posted a couple of new videos showing their Atlas humanoid robot doing some of the most impressive parkour we've yet seen. Let's watch!

Parkour is the perfect sandbox for the Atlas team at Boston Dynamics to experiment with new behaviors. In this video our humanoid robots demonstrate their whole-body athletics, maintaining its balance through a variety of rapidly changing, high-energy activities. Through jumps, balance beams, and vaults, we demonstrate how we push Atlas to its limits to discover the next generation of mobility, perception, and athletic intelligence.

There are a couple of new and exciting things in this video. First, Atlas is doing some serious work with its upper body by vaulting over that bar. It's not supporting its entire weight with one arm, since it's jumping, but it's doing what looks like some fairly complex balancing and weight management using all four of its limbs at once. Most of what we've seen from Atlas up to this point has been lower body focused, and while the robot has used its arms for forward rolls and stuff, those moves have been simpler than what we're seeing here. Aaron Saunders, Boston Dynamics' VP of Engineering, suggested to us earlier this year that the Atlas team would be working on more upper-body stuff, it looks like they're now delivering. We're expecting that Atlas will continue to improve in this direction, and that at some point it'll be able to do the equivalent of a pull-up, which will open up a much wider variety of behaviors.

The second big new thing is that Atlas is now leveraging perception much more heavily, according to Scott Kuindersma, the Atlas team lead at Boston Dynamics, who wrote about it in a blog post:

"Atlas's moves are driven by perception now, and they weren't back then," Kuindersma explains. "For example, the previous floor routine and dance videos were about capturing our ability to create a variety of dynamic moves and chain them together into a routine that we could run over and over again. In that case, the robot's control system still has to make lots of critical adjustments on the fly to maintain balance and posture goals, but the robot was not sensing and reacting to its environment."

In this iteration of parkour, the robot is adapting behaviors in its repertoire based on what it sees. This means the engineers don't need to pre-program jumping motions for all possible platforms and gaps the robot might encounter. Instead, the team creates a smaller number of template behaviors that can be matched to the environment and executed online.

This is a pretty big deal. Without perception, Atlas was running its routines blind—as long as the environment was kept more or less completely static, the robot would do okay, but obviously that's a major limitation. What Atlas is doing in this new video is still somewhat limited, in the sense that it's still relying on template behaviors created by humans rather than doing true dynamic planning, but this represents a lot of progress.

One other thing that's worth paying attention to is how Boston Dynamics thinks of humanoid robots:

"Humanoids are interesting from a couple perspectives," Kuindersma says. "First, they capture our vision of a go-anywhere, do-anything robot of the future. They may not be the best design for any particular task, but if you wanted to build one platform that could perform a wide variety of physical tasks, we already know that a human form factor is capable of doing that."

This tends to be the justification for humanoid robots, along with the idea that you need a humanoid form factor to operate in human environments. But Kuindersma is absolutely right when he says that humanoids may not be the best design for any particular task, and at least in the near term, practical commercial robots tend not to be generalists. Even Boston Dynamic's dog-like robot Spot, with its capable legged mobility, is suited primarily to a narrow range of specific tasks—it's great for situations where legs are necessary, but otherwise it's complex and expensive and wheels often do better. I think it's very important that Boston Dynamics is working towards a go-anywhere, do-anything robot, but it's also important to keep expectations in check, and remember that even robots like Atlas are (I would argue) a decade or more away from this generalist vision.

Meanwhile, Boston Dynamics seems, for better or worse, to be moving away from their habit of surprise posting crazy robot videos with zero explanation. Along with the new parkour video, Boston Dynamics has put together a second behind the scenes video:

Can I just say that I love how absolutely trashed the skins on these robots look? That's how you know good work is getting done.

There's a bunch more detail in this blog post, and we sent Boston Dynamics a couple of questions, too. We'll update this post when we hear back later today.

The most common causes of the risk of work-related musculoskeletal disorders (WMSD) have been identified as joint overloading, bad postures, and vibrations. In the last two decades, various solutions ranging from human-robot collaborative systems to robotic exoskeletons have been proposed to mitigate them. More recently, a new approach has been proposed with a high potential in this direction: the supernumerary robotic limbs SRLs are additional robotic body parts (e.g., fingers, legs, and arms) that can be worn by the workers, augmenting their natural ability and reducing the risks of injuries. These systems are generally proposed in the literature for their potentiality of augmenting the user’s ability, but here we would like to explore this kind of technology as a new generation of (personal) protective equipment. A supernumerary robotic upper limb, for example, allows for indirectly interacting with hazardous objects like chemical products or vibrating tools. In particular, in this work, we present a supernumerary robotic limbs system to reduce the vibration transmitted along the arms and minimize the load on the upper limb joints. For this purpose, an off-the-shelf wearable gravity compensation system is integrated with a soft robotic hand and a custom damping wrist, designed starting from theoretical considerations on a mass-spring-damper model. The real efficacy of the system was experimentally tested within a simulated industrial work environment, where seven subjects performed a drilling task on two different materials. Experimental analysis was conducted according to the ISO-5349. Results showed a reduction from 40 to 60% of vibration transmission with respect to the traditional hand drilling using the presented SRL system without compromising the time performance.

We consider a pursuit-evasion problem with a heterogeneous team of multiple pursuers and multiple evaders. Although both the pursuers and the evaders are aware of each others’ control and assignment strategies, they do not have exact information about the other type of agents’ location or action. Using only noisy on-board sensors the pursuers (or evaders) make probabilistic estimation of positions of the evaders (or pursuers). Each type of agent use Markov localization to update the probability distribution of the other type. A search-based control strategy is developed for the pursuers that intrinsically takes the probability distribution of the evaders into account. Pursuers are assigned using an assignment algorithm that takes redundancy (i.e., an excess in the number of pursuers than the number of evaders) into account, such that the total or maximum estimated time to capture the evaders is minimized. In this respect we assume the pursuers to have clear advantage over the evaders. However, the objective of this work is to use assignment strategies that minimize the capture time. This assignment strategy is based on a modified Hungarian algorithm as well as a novel algorithm for determining assignment of redundant pursuers. The evaders, in order to effectively avoid the pursuers, predict the assignment based on their probabilistic knowledge of the pursuers and use a control strategy to actively move away from those pursues. Our experimental evaluation shows that the redundant assignment algorithm performs better than an alternative nearest-neighbor based assignment algorithm1.

Soft robots provide significant advantages over their rigid counterparts. These compliant, dexterous devices can navigate delicate environments with ease without damage to themselves or their surroundings. With many degrees of freedom, a single soft robotic actuator can achieve configurations that would be very challenging to obtain when using a rigid linkage. Because of these qualities, soft robots are well suited for human interaction. While there are many types of soft robot actuation, the most common type is fluidic actuation, where a pressurized fluid is used to inflate the device, causing bending or some other deformation. This affords advantages with regards to size, ease of manufacturing, and power delivery, but can pose issues when it comes to controlling the robot. Any device capable of complex tasks such as navigation requires multiple actuators working together. Traditionally, these have each required their own mechanism outside of the robot to control the pressure within. Beyond the limitations on autonomy that such a benchtop controller induces, the tether of tubing connecting the robot to its controller can increase stiffness, reduce reaction speed, and hinder miniaturization. Recently, a variety of techniques have been used to integrate control hardware into soft fluidic robots. These methods are varied and draw from disciplines including microfluidics, digital logic, and material science. In this review paper, we discuss the state of the art of onboard control hardware for soft fluidic robots with an emphasis on novel valve designs, including an overview of the prevailing techniques, how they differ, and how they compare to each other. We also define metrics to guide our comparison and discussion. Since the uses for soft robots can be so varied, the control system for one robot may very likely be inappropriate for use in another. We therefore wish to give an appreciation for the breadth of options available to soft roboticists today.



This article is sponsored by Elephant Robotics.

Elephant Robotics is well known for its line of innovative products that help enhance manufacturing, assembly, education, and more. In 2020, Elephant Robotics released the world's smallest 6-axis robot arm: myCobot. Since its release, myCobot has sold over 5,000 units to clients all over the world.

Following the footprint of myCobot and to fulfill the demand from more users, Elephant Robotics is now expanding its Lightweight Robot Arm Product Line.

myCobot provides an answer for affordable commercial robot arms

The idea of a lightweight commercial robot arm has been raised for a long time, but factory and assembly lines are still the most common scenes for robot arms. A traditional robot arm is usually heavy, loud, and difficult to program. Most importantly, the price is too high, and the cost recovery cycle becomes unacceptably long. These issues have limited robot arms from entering commercial settings.

Elephant Robotics' myCobot series, for the first time, provides an answer for all these issues.

The myCobot series of lightweight 6-axis robots has a payload from 250 grams to 2 kilograms and a working range from 280 to 600 mm. The innovative all-in-one design from Elephant Robotics allows these robots to get rid of the traditional control box and have all controllers and panels integrated into the base.

myCobot series robots are all open source and support various ways of programming and are super easy for beginners to use and adapt to their needs.

myCobot 280, as the knock-out product, is an open-source robot arm with a 250 g payload. It is an ideal platform for learning ROS, V-rep, myBlockly, Matlab, CAN, and 485 bus-mastering control.

myCobot 320 has a payload of 1 kg payload and a continuous working time of 8 hours. myCobot 320 provides an unprecedented option for the service industry.

myCobot Pro 600, as the top-level product of myCobot series products, features 600 mm arm reach and 2 kg payload. It is equipped withy three harmonic drives that are being used on the commercial robot for the first time. myCobot Pro 600 is expanding the use of robot arms to medical, catering, manufacturing, and other industries, which have not benefited from automation.

The myCobot series of robotic arms provides usability, security, and low-noise. Compared to other options, it's a highly competitive choice for a wide range of automation applications. It allows quick deployment and enables human-robot collaboration. It's safe, increases efficiency for businesses, and is a cost-effective solution.

Traditional industry + robot arm?

The myCobot series can be used for commercial scenarios including production, manufacturing, and assembly. For some more creative ideas, check out the following videos: to make coffee, to make matcha, provide a robot message, or to help a photographer work.

myCobot Pro as a photographer assistant. Elephant Robotics

The myCobot series can also be used for scientific research, educational purposes, and medical purposes.

A couple of other unique examples include using it as a smart barista to expand a coffee business; to provide an excellent experience of robot massage; to help in a photographic studio for more accurate and stable precision work; to produce efficient line work and to help print out photos continuously for the perfect combination of artistic creation and robotics.

It can also work as an assistant in a workshop for human and robot collaboration and infinite creativity. Its all-in-one design also make it a great fit for automated guided vehicle (AGV) solutions.

All of the products in the myCobot line are open source and work with Elephant Robotics' myStudio, a one-stop platform for all of the robots from Elephant Robotics. This platform provides continuous updates of firmware, video tutorials, and provides maintenance and repair information (e.g. tutorials, Q&A, etc.). Users can also buy several accessories targeted at robotic collaboration applications as well.

Open source robot arm

myCobot product line offers various software interfaces and adapt to the majority of development platforms. myCobot product line can be integrated with applications like the Robot Operating System (ROS) and MoveIt, and various APIs, including Python, C++, C#, Java, and Arduino. It also supports multiple ways of programming, including myBlockly and RoboFlow.

Elephant aims to provide the best development experience and lower the development barriers to allow more users to have their hand on myCobots to create useful applications.

"With the new myCobot series products, we are happy to enable customers to create more efficiently on a larger scale than ever before," said Elephant Robotics cofounder and CEO Joey Song. "We have helped customers from different industries to achieve automation upgrading like the Tumor Thermal Therapy Robot in medical use."

"We are hoping to allow more people to use our latest robotic arm," he added, " to create and enhance their businesses and maker work."



This article is sponsored by Elephant Robotics.

Elephant Robotics is well known for its line of innovative products that help enhance manufacturing, assembly, education, and more. In 2020, Elephant Robotics released the world's smallest 6-axis robot arm: myCobot. Since its release, myCobot has sold over 5,000 units to clients all over the world.

Following the footprint of myCobot and to fulfill the demand from more users, Elephant Robotics is now expanding its Lightweight Robot Arm Product Line.

myCobot provides an answer for affordable commercial robot arms

The idea of a lightweight commercial robot arm has been raised for a long time, but factory and assembly lines are still the most common scenes for robot arms. A traditional robot arm is usually heavy, loud, and difficult to program. Most importantly, the price is too high, and the cost recovery cycle becomes unacceptably long. These issues have limited robot arms from entering commercial settings.

Elephant Robotics' myCobot series, for the first time, provides an answer for all these issues.

The myCobot series of lightweight 6-axis robots has a payload from 250 grams to 2 kilograms and a working range from 280 to 600 mm. The innovative all-in-one design from Elephant Robotics allows these robots to get rid of the traditional control box and have all controllers and panels integrated into the base.

myCobot series robots are all open source and support various ways of programming and are super easy for beginners to use and adapt to their needs.

myCobot 280, as the knock-out product, is an open-source robot arm with a 250 g payload. It is an ideal platform for learning ROS, V-rep, myBlockly, Matlab, CAN, and 485 bus-mastering control.

myCobot 320 has a payload of 1 kg payload and a continuous working time of 8 hours. myCobot 320 provides an unprecedented option for the service industry.

myCobot Pro 600, as the top-level product of myCobot series products, features 600 mm arm reach and 2 kg payload. It is equipped withy three harmonic drives that are being used on the commercial robot for the first time. myCobot Pro 600 is expanding the use of robot arms to medical, catering, manufacturing, and other industries, which have not benefited from automation.

The myCobot series of robotic arms provides usability, security, and low-noise. Compared to other options, it's a highly competitive choice for a wide range of automation applications. It allows quick deployment and enables human-robot collaboration. It's safe, increases efficiency for businesses, and is a cost-effective solution.

Traditional industry + robot arm?

The myCobot series can be used for commercial scenarios including production, manufacturing, and assembly. For some more creative ideas, check out the following videos: to make coffee, to make matcha, provide a robot message, or to help a photographer work.

myCobot Pro as a photographer assistant. Elephant Robotics

The myCobot series can also be used for scientific research, educational purposes, and medical purposes.

A couple of other unique examples include using it as a smart barista to expand a coffee business; to provide an excellent experience of robot massage; to help in a photographic studio for more accurate and stable precision work; to produce efficient line work and to help print out photos continuously for the perfect combination of artistic creation and robotics.

It can also work as an assistant in a workshop for human and robot collaboration and infinite creativity. Its all-in-one design also make it a great fit for automated guided vehicle (AGV) solutions.

All of the products in the myCobot line are open source and work with Elephant Robotics' myStudio, a one-stop platform for all of the robots from Elephant Robotics. This platform provides continuous updates of firmware, video tutorials, and provides maintenance and repair information (e.g. tutorials, Q&A, etc.). Users can also buy several accessories targeted at robotic collaboration applications as well.

Open source robot arm

myCobot product line offers various software interfaces and adapt to the majority of development platforms. myCobot product line can be integrated with applications like the Robot Operating System (ROS) and MoveIt, and various APIs, including Python, C++, C#, Java, and Arduino. It also supports multiple ways of programming, including myBlockly and RoboFlow.

Elephant aims to provide the best development experience and lower the development barriers to allow more users to have their hand on myCobots to create useful applications.

"With the new myCobot series products, we are happy to enable customers to create more efficiently on a larger scale than ever before," said Elephant Robotics cofounder and CEO Joey Song. "We have helped customers from different industries to achieve automation upgrading like the Tumor Thermal Therapy Robot in medical use."

"We are hoping to allow more people to use our latest robotic arm," he added, " to create and enhance their businesses and maker work."

Pages