Frontiers in Robotics and AI

RSS Feed for Frontiers in Robotics and AI | New and Recent Articles
Subscribe to Frontiers in Robotics and AI feed

Objective: For transradial amputees, robotic prosthetic hands promise to regain the capability to perform daily living activities. Current control methods based on physiological signals such as electromyography (EMG) are prone to yielding poor inference outcomes due to motion artifacts, muscle fatigue, and many more. Vision sensors are a major source of information about the environment state and can play a vital role in inferring feasible and intended gestures. However, visual evidence is also susceptible to its own artifacts, most often due to object occlusion, lighting changes, etc. Multimodal evidence fusion using physiological and vision sensor measurements is a natural approach due to the complementary strengths of these modalities.

Methods: In this paper, we present a Bayesian evidence fusion framework for grasp intent inference using eye-view video, eye-gaze, and EMG from the forearm processed by neural network models. We analyze individual and fused performance as a function of time as the hand approaches the object to grasp it. For this purpose, we have also developed novel data processing and augmentation techniques to train neural network components.

Results: Our results indicate that, on average, fusion improves the instantaneous upcoming grasp type classification accuracy while in the reaching phase by 13.66% and 14.8%, relative to EMG (81.64% non-fused) and visual evidence (80.5% non-fused) individually, resulting in an overall fusion accuracy of 95.3%.

Conclusion: Our experimental data analyses demonstrate that EMG and visual evidence show complementary strengths, and as a consequence, fusion of multimodal evidence can outperform each individual evidence modality at any given time.

The robotics discipline is exploring precise and versatile solutions for upper-limb rehabilitation in Multiple Sclerosis (MS). People with MS can greatly benefit from robotic systems to help combat the complexities of this disease, which can impair the ability to perform activities of daily living (ADLs). In order to present the potential and the limitations of smart mechatronic devices in the mentioned clinical domain, this review is structured to propose a concise SWOT (Strengths, Weaknesses, Opportunities, and Threats) Analysis of robotic rehabilitation in MS. Through the SWOT Analysis, a method mostly adopted in business management, this paper addresses both internal and external factors that can promote or hinder the adoption of upper-limb rehabilitation robots in MS. Subsequently, it discusses how the synergy with another category of interaction technologies - the systems underlying virtual and augmented environments - may empower Strengths, overcome Weaknesses, expand Opportunities, and handle Threats in rehabilitation robotics for MS. The impactful adaptability of these digital settings (extensively used in rehabilitation for MS, even to approach ADL-like tasks in safe simulated contexts) is the main reason for presenting this approach to face the critical issues of the aforementioned SWOT Analysis. This methodological proposal aims at paving the way for devising further synergistic strategies based on the integration of medical robotic devices with other promising technologies to help upper-limb functional recovery in MS.

Creating an accurate model of a user’s skills is an essential task for Intelligent Tutoring Systems (ITS) and robotic tutoring systems. This allows the system to provide personalized help based on the user’s knowledge state. Most user skill modeling systems have focused on simpler tasks such as arithmetic or multiple-choice questions, where the user’s model is only updated upon task completion. These tasks have a single correct answer and they generate an unambiguous observation of the user’s answer. This is not the case for more complex tasks such as programming or engineering tasks, where the user completing the task creates a succession of noisy user observations as they work on different parts of the task. We create an algorithm called Time-Dependant Bayesian Knowledge Tracing (TD-BKT) that tracks users’ skills throughout these more complex tasks. We show in simulation that it has a more accurate model of the user’s skills and, therefore, can select better teaching actions than previous algorithms. Lastly, we show that a robot can use TD-BKT to model a user and teach electronic circuit tasks to participants during a user study. Our results show that participants significantly improved their skills when modeled using TD-BKT.

Background: Assistive Robotic Arms are designed to assist physically disabled people with daily activities. Existing joysticks and head controls are not applicable for severely disabled people such as people with Locked-in Syndrome. Therefore, eye tracking control is part of ongoing research. The related literature spans many disciplines, creating a heterogeneous field that makes it difficult to gain an overview.

Objectives: This work focuses on ARAs that are controlled by gaze and eye movements. By answering the research questions, this paper provides details on the design of the systems, a comparison of input modalities, methods for measuring the performance of these controls, and an outlook on research areas that gained interest in recent years.

Methods: This review was conducted as outlined in the PRISMA 2020 Statement. After identifying a wide range of approaches in use the authors decided to use the PRISMA-ScR extension for a scoping review to present the results. The identification process was carried out by screening three databases. After the screening process, a snowball search was conducted.

Results: 39 articles and 6 reviews were included in this article. Characteristics related to the system and study design were extracted and presented divided into three groups based on the use of eye tracking.

Conclusion: This paper aims to provide an overview for researchers new to the field by offering insight into eye tracking based robot controllers. We have identified open questions that need to be answered in order to provide people with severe motor function loss with systems that are highly useable and accessible.

In recent years, the development of robots that can engage in non-task-oriented dialogue with people, such as chat, has received increasing attention. This study aims to clarify the factors that improve the user’s willingness to talk with robots in non-task oriented dialogues (e.g., chat). A previous study reported that exchanging subjective opinions makes such dialogue enjoyable and enthusiastic. In some cases, however, the robot’s subjective opinions are not realistic, i.e., the user believes the robot does not have opinions, thus we cannot attribute the opinion to the robot. For example, if a robot says that alcohol tastes good, it may be difficult to imagine the robot having such an opinion. In this case, the user’s motivation to exchange opinions may decrease. In this study, we hypothesize that regardless of the type of robot, opinion attribution affects the user’s motivation to exchange opinions with humanoid robots. We examined the effect by preparing various opinions of two kinds of humanoid robots. The experimental result suggests that not only the users’ interest in the topic but also the attribution of the subjective opinions to them influence their motivation to exchange opinions. Another analysis revealed that the android significantly increased the motivation when they are interested in the topic and do not attribute opinions, while the small robot significantly increased it when not interested and attributed opinions. In situations where there are opinions that cannot be attributed to humanoid robots, the result that androids are more motivating when users have the interests even if opinions are not attributed can indicate the usefulness of androids.

Over the past few years, there has been a noticeable surge in efforts to design novel tools and approaches that incorporate Artificial Intelligence (AI) into rehabilitation of persons with lower-limb impairments, using robotic exoskeletons. The potential benefits include the ability to implement personalized rehabilitation therapies by leveraging AI for robot control and data analysis, facilitating personalized feedback and guidance. Despite this, there is a current lack of literature review specifically focusing on AI applications in lower-limb rehabilitative robotics. To address this gap, our work aims at performing a review of 37 peer-reviewed papers. This review categorizes selected papers based on robotic application scenarios or AI methodologies. Additionally, it uniquely contributes by providing a detailed summary of input features, AI model performance, enrolled populations, exoskeletal systems used in the validation process, and specific tasks for each paper. The innovative aspect lies in offering a clear understanding of the suitability of different algorithms for specific tasks, intending to guide future developments and support informed decision-making in the realm of lower-limb exoskeleton and AI applications.

Finding actual causes of unmanned aerial vehicle (UAV) failures can be split into two main tasks: building causal models and performing actual causality analysis (ACA) over them. While there are available solutions in the literature to perform ACA, building comprehensive causal models is still an open problem. The expensive and time-consuming process of building such models, typically performed manually by domain experts, has hindered the widespread application of causality-based diagnosis solutions in practice. This study proposes a methodology based on natural language processing for automating causal model generation for UAVs. After collecting textual data from online resources, causal keywords are identified in sentences. Next, cause–effect phrases are extracted from sentences based on predefined dependency rules between tokens. Finally, the extracted cause–effect pairs are merged to form a causal graph, which we then use for ACA. To demonstrate the applicability of our framework, we scrape online text resources of Ardupilot, an open-source UAV controller software. Our evaluations using real flight logs show that the generated graphs can successfully be used to find the actual causes of unwanted events. Moreover, our hybrid cause–effect extraction module performs better than a purely deep-learning based tool (i.e., CiRA) by 32% in precision and 25% in recall in our Ardupilot use case.

Colorectal cancer as a major disease that poses a serious threat to human health continues to rise in incidence. And the timely colon examinations are crucial for the prevention, diagnosis, and treatment of this disease. Clinically, gastroscopy is used as a universal means of examination, prevention and diagnosis of this disease, but this detection method is not patient-friendly and can easily cause damage to the intestinal mucosa. Soft robots as an emerging technology offer a promising approach to examining, diagnosing, and treating intestinal diseases due to their high flexibility and patient-friendly interaction. However, existing research on intestinal soft robots mainly focuses on controlled movement and observation within the colon or colon-like environments, lacking additional functionalities such as sample collection from the intestine. Here, we designed and developed an earthworm-like soft robot specifically for colon sampling. It consists of a robot body with an earthworm-like structure for movement in the narrow and soft pipe-environments, and a sampling part with a flexible arm structure resembling an elephant trunk for bidirectional bending sampling. This soft robot is capable of flexible movement and sample collection within an colon-like environment. By successfully demonstrating the feasibility of utilizing soft robots for colon sampling, this work introduces a novel method for non-destructive inspection and sampling in the colon. It represents a significant advancement in the field of medical robotics, offering a potential solution for more efficient and accurate examination and diagnosis of intestinal diseases, specifically for colorectal cancer.

Accurate texture classification empowers robots to improve their perception and comprehension of the environment, enabling informed decision-making and appropriate responses to diverse materials and surfaces. Still, there are challenges for texture classification regarding the vast amount of time series data generated from robots’ sensors. For instance, robots are anticipated to leverage human feedback during interactions with the environment, particularly in cases of misclassification or uncertainty. With the diversity of objects and textures in daily activities, Active Learning (AL) can be employed to minimize the number of samples the robot needs to request from humans, streamlining the learning process. In the present work, we use AL to select the most informative samples for annotation, thus reducing the human labeling effort required to achieve high performance for classifying textures. We also use a sliding window strategy for extracting features from the sensor’s time series used in our experiments. Our multi-class dataset (e.g., 12 textures) challenges traditional AL strategies since standard techniques cannot control the number of instances per class selected to be labeled. Therefore, we propose a novel class-balancing instance selection algorithm that we integrate with standard AL strategies. Moreover, we evaluate the effect of sliding windows of two-time intervals (3 and 6 s) on our AL Strategies. Finally, we analyze in our experiments the performance of AL strategies, with and without the balancing algorithm, regarding f1-score, and positive effects are observed in terms of performance when using our proposed data pipeline. Our results show that the training data can be reduced to 70% using an AL strategy regardless of the machine learning model and reach, and in many cases, surpass a baseline performance. Finally, exploring the textures with a 6-s window achieves the best performance, and using either Extra Trees produces an average f1-score of 90.21% in the texture classification data set.

Online questionnaires that use crowdsourcing platforms to recruit participants have become commonplace, due to their ease of use and low costs. Artificial intelligence (AI)-based large language models (LLMs) have made it easy for bad actors to automatically fill in online forms, including generating meaningful text for open-ended tasks. These technological advances threaten the data quality for studies that use online questionnaires. This study tested whether text generated by an AI for the purpose of an online study can be detected by both humans and automatic AI detection systems. While humans were able to correctly identify the authorship of such text above chance level (76% accuracy), their performance was still below what would be required to ensure satisfactory data quality. Researchers currently have to rely on a lack of interest among bad actors to successfully use open-ended responses as a useful tool for ensuring data quality. Automatic AI detection systems are currently completely unusable. If AI submissions of responses become too prevalent, then the costs associated with detecting fraudulent submissions will outweigh the benefits of online questionnaires. Individual attention checks will no longer be a sufficient tool to ensure good data quality. This problem can only be systematically addressed by crowdsourcing platforms. They cannot rely on automatic AI detection systems and it is unclear how they can ensure data quality for their paying clients.

Introduction: Navigation satellite systems can fail to work or work incorrectly in a number of conditions: signal shadowing, electromagnetic interference, atmospheric conditions, and technical problems. All of these factors can significantly affect the localization accuracy of autonomous driving systems. This emphasizes the need for other localization technologies, such as Lidar.

Methods: The use of the Kalman filter in combination with Lidar can be very effective in various applications due to the synergy of their capabilities. The Kalman filter can improve the accuracy of lidar measurements by taking into account the noise and inaccuracies present in the measurements.

Results: In this paper, we propose a parallel Kalman algorithm in three-dimensional space to speed up the computational speed of Lidar localization. At the same time, the initial localization accuracy of the latter is preserved. A distinctive feature of the proposed approach is that the Kalman localization algorithm itself is parallelized, rather than the process of building a map for navigation. The proposed algorithm allows us to obtain the result 3.8 times faster without compromising the localization accuracy, which was 3% for both cases, making it effective for real-time decision-making.

Discussion: The reliability of this result is confirmed by a preliminary theoretical estimate of the acceleration rate based on Ambdahl’s law. Accelerating the Kalman filter with CUDA for Lidar localization can be of significant practical value, especially in real-time and in conditions where large amounts of data from Lidar sensors need to be processed.

Introduction: Humans and robots are increasingly collaborating on complex tasks such as firefighting. As robots are becoming more autonomous, collaboration in human-robot teams should be combined with meaningful human control. Variable autonomy approaches can ensure meaningful human control over robots by satisfying accountability, responsibility, and transparency. To verify whether variable autonomy approaches truly ensure meaningful human control, the concept should be operationalized to allow its measurement. So far, designers of variable autonomy approaches lack metrics to systematically address meaningful human control.

Methods: Therefore, this qualitative focus group (n = 5 experts) explored quantitative operationalizations of meaningful human control during dynamic task allocation using variable autonomy in human-robot teams for firefighting. This variable autonomy approach requires dynamic allocation of moral decisions to humans and non-moral decisions to robots, using robot identification of moral sensitivity. We analyzed the data of the focus group using reflexive thematic analysis.

Results: Results highlight the usefulness of quantifying the traceability requirement of meaningful human control, and how situation awareness and performance can be used to objectively measure aspects of the traceability requirement. Moreover, results emphasize that team and robot outcomes can be used to verify meaningful human control but that identifying reasons underlying these outcomes determines the level of meaningful human control.

Discussion: Based on our results, we propose an evaluation method that can verify if dynamic task allocation using variable autonomy in human-robot teams for firefighting ensures meaningful human control over the robot. This method involves subjectively and objectively quantifying traceability using human responses during and after simulations of the collaboration. In addition, the method involves semi-structured interviews after the simulation to identify reasons underlying outcomes and suggestions to improve the variable autonomy approach.

To effectively control a robot’s motion, it is common to employ a simplified model that approximates the robot’s dynamics. Nevertheless, discrepancies between the actual mechanical properties of the robot and the simplified model can result in motion failures. To address this issue, this study introduces a pneumatic-driven bipedal musculoskeletal robot designed to closely match the mechanical characteristics of a simplified spring-loaded inverted pendulum (SLIP) model. The SLIP model is widely utilized in robotics due to its passive stability and dynamic properties resembling human walking patterns. A musculoskeletal bipedal robot was designed and manufactured to concentrate its center of mass within a compact body around the hip joint, featuring low leg inertia in accordance with SLIP model principles. Furthermore, we validated that the robot exhibits similar dynamic characteristics to the SLIP model through a sequential jumping experiment and by comparing its performance to SLIP model simulation.

Deep generative models (DGM) are increasingly employed in emergent communication systems. However, their application in multimodal data contexts is limited. This study proposes a novel model that combines multimodal DGM with the Metropolis-Hastings (MH) naming game, enabling two agents to focus jointly on a shared subject and develop common vocabularies. The model proves that it can handle multimodal data, even in cases of missing modalities. Integrating the MH naming game with multimodal variational autoencoders (VAE) allows agents to form perceptual categories and exchange signs within multimodal contexts. Moreover, fine-tuning the weight ratio to favor a modality that the model could learn and categorize more readily improved communication. Our evaluation of three multimodal approaches - mixture-of-experts (MoE), product-of-experts (PoE), and mixture-of-product-of-experts (MoPoE)–suggests an impact on the creation of latent spaces, the internal representations of agents. Our results from experiments with the MNIST + SVHN and Multimodal165 datasets indicate that combining the Gaussian mixture model (GMM), PoE multimodal VAE, and MH naming game substantially improved information sharing, knowledge formation, and data reconstruction.

Exoskeletons that assist in ankle plantarflexion can improve energy economy in locomotion. Characterizing the joint-level mechanisms behind these reductions in energy cost can lead to a better understanding of how people interact with these devices, as well as to improved device design and training protocols. We examined the biomechanical responses to exoskeleton assistance in exoskeleton users trained with a lengthened protocol. Kinematics at unassisted joints were generally unchanged by assistance, which has been observed in other ankle exoskeleton studies. Peak plantarflexion angle increased with plantarflexion assistance, which led to increased total and biological mechanical power despite decreases in biological joint torque and whole-body net metabolic energy cost. Ankle plantarflexor activity also decreased with assistance. Muscles that act about unassisted joints also increased activity for large levels of assistance, and this response should be investigated over long-term use to prevent overuse injuries.

Introduction: Patients who are hospitalized may be at a higher risk for falling, which can result in additional injuries, longer hospitalizations, and extra cost for healthcare organizations. A frequent context for these falls is when a hospitalized patient needs to use the bathroom. While it is possible that “high-tech” tools like robots and AI applications can help, adopting a human-centered approach and engaging users and other affected stakeholders in the design process can help to maximize benefits and avoid unintended consequences.

Methods: Here, we detail our findings from a human-centered design research effort to investigate how the process of toileting a patient can be ameliorated through the application of advanced tools like robots and AI. We engaged healthcare professionals in interviews, focus groups, and a co-creation session in order to recognize common barriers in the toileting process and find opportunities for improvement.

Results: In our conversations with participants, who were primarily nurses, we learned that toileting is more than a nuisance for technology to remove through automation. Nurses seem keenly aware and responsive to the physical and emotional pains experienced by patients during the toileting process, and did not see technology as a feasible or welcomed substitute. Instead, nurses wanted tools which supported them in providing this care to their patients. Participants envisioned tools which helped them anticipate and understand patient toileting assistance needs so they could plan to assist at convenient times during their existing workflows. Participants also expressed favorability towards mechanical assistive features which were incorporated into existing equipment to ensure ubiquitous availability when needed without adding additional mass to an already cramped and awkward environment.

Discussion: We discovered that the act of toileting served more than one function, and can be viewed as a valuable touchpoint in which nurses can assess, support, and encourage their patients to engage in their own recovery process as they perform a necessary and normal function of life. While we found opportunities for technology to make the process safer and less burdensome for patients and clinical staff alike, we believe that designers should preserve and enhance the therapeutic elements of the nurse-patient interaction rather than eliminate it through automation.

Introduction: Communication from automated vehicles (AVs) to pedestrians using augmented reality (AR) could positively contribute to traffic safety. However, previous AR research for pedestrians was mainly conducted through online questionnaires or experiments in virtual environments instead of real ones.

Methods: In this study, 28 participants conducted trials outdoors with an approaching AV and were supported by four different AR interfaces. The AR experience was created by having participants wear a Varjo XR-3 headset with see-through functionality, with the AV and AR elements virtually overlaid onto the real environment. The AR interfaces were vehicle-locked (Planes on vehicle), world-locked (Fixed pedestrian lights, Virtual fence), or head-locked (Pedestrian lights HUD). Participants had to hold down a button when they felt it was safe to cross, and their opinions were obtained through rating scales, interviews, and a questionnaire.

Results: The results showed that participants had a subjective preference for AR interfaces over no AR interface. Furthermore, the Pedestrian lights HUD was more effective than no AR interface in a statistically significant manner, as it led to participants more frequently keeping the button pressed. The Fixed pedestrian lights scored lower than the other interfaces, presumably due to low saliency and the fact that participants had to visually identify both this AR interface and the AV.

Discussion: In conclusion, while users favour AR in AV-pedestrian interactions over no AR, its effectiveness depends on design factors like location, visibility, and visual attention demands. In conclusion, this work provides important insights into the use of AR outdoors. The findings illustrate that, in these circumstances, a clear and easily interpretable AR interface is of key importance.

Background: Robots are increasingly used as interaction partners with humans. Social robots are designed to follow expected behavioral norms when engaging with humans and are available with different voices and even accents. Some studies suggest that people prefer robots to speak in the user’s dialect, while others indicate a preference for different dialects.

Methods: Our study examined the impact of the Berlin dialect on perceived trustworthiness and competence of a robot. One hundred and twenty German native speakers (Mage = 32 years, SD = 12 years) watched an online video featuring a NAO robot speaking either in the Berlin dialect or standard German and assessed its trustworthiness and competence.

Results: We found a positive relationship between participants’ self-reported Berlin dialect proficiency and trustworthiness in the dialect-speaking robot. Only when controlled for demographic factors, there was a positive association between participants’ dialect proficiency, dialect performance and their assessment of robot’s competence for the standard German-speaking robot. Participants’ age, gender, length of residency in Berlin, and device used to respond also influenced assessments. Finally, the robot’s competence positively predicted its trustworthiness.

Discussion: Our results inform the design of social robots and emphasize the importance of device control in online experiments.

Pages